Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)2022-03-142022-03-14https://noesis.uis.edu.co/handle/20.500.14071/8250Research in the area of automatic text summarization has intensifed in recent years due to the large amount of information available in electronic documents. This article present the most relevant methods for automatic text extractive summarization that have been developed both for a single document and multiple documents, with special emphasis on methods based on algebraic reduction, clustering and evolutionary models, of which there is great amount of research in recent years, since they are language-independent and unsupervised methods.Las investigaciones en el área de generación automática de resúmenes de textos se han intensifcado en los últimos años debido a la gran cantidad de información disponible en documentos electrónicos. Este artículo presenta los métodos más relevantes de generación automática de resúmenes extractivos que se han desarrollado tanto para un solo documento como para múltiples documentos, haciendo especial énfasis en los métodos basados en reducción algebraica, en agrupamiento y en modelos evolutivos, de los cuales existe gran cantidad de investigaciones en los últimos años, dado que son métodos independientes del lenguaje y no supervisados.  application/pdftext/htmlautomatic text summarizationalgebraic reductionclusteringevolutionary modelsGeneración automática de resúmenes de textosreducción algebraicaagrupamientomodelos evolutivosUna Revisión de la generación automática de resúmenes extractivosA review of the extractive text summarizationinfo:eu-repo/semantics/articlehttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)