Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Orlandoni Merli, GiampaoloRosas Gualdron, Adriana Marcela2024-03-0320162024-03-0320162016https://noesis.uis.edu.co/handle/20.500.14071/35510Con el fin de pronosticar el comportamiento del recaudo del impuesto de industria, comercio, avisos y tableros (ICA), para el año 2016, se plantea la metodología de modelos ARIMA, por su capacidad de predicción a corto plazo. Se definen cuatro fases: La primera es la identificación, describiendo el comportamiento del recaudo histórico y evaluando la posibilidad de convertir la serie estacionaria tanto en su parte regular como estacional. La segunda fase consiste en la estimación del modelo, teniendo en cuenta el criterio AIC, menores errores y aleatoriedad de los residuos. La tercera es la validación: en esta fase se toma el recaudo del año 2015 cuyas cifras ya han sido causadas y se contrasta la proyección referente a este año con el fin de garantizar la calidad del modelo. La última fase es la predicción, en cuyo caso se pronostica el recaudo año 2016, teniendo en cuenta un intervalo de confianza del 80%. Cabe anotar que el recaudo está constituido por el valor a pagar más los intereses de mora y se encuentra expresado en miles de millones de pesos. La frecuencia de la serie de tiempo analizada es bimestral y las variaciones estacionales es una característica importante que es tenida en cuenta en la serie de tiempo para predecir el modelo. Adicionalmente, se usa la función de autocorrelación para identificar si el proceso es estacionario y posteriormente se utiliza la función de autocorrelación parcial para detectar el modelo. Una vez garantizada la estacionariedad del proceso, se establece que el modelo que se ajusta al comportamiento histórico de la serie es un 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)6. Para validar si el modelo seleccionado es adecuado, se usa: el test de Box Ljung, la prueba de Shapiro Wilk y el periodograma integrado. Concluyendo que los residuos no están autocorrelacionados, se distribuyen normal y aleatoriamente.application/pdfspahttp://creativecommons.org/licenses/by/4.0/RecaudoImpuestoEstacionariedadEstacionalidadModelo Arima (Modelo Autoregresivo Integrado De Media Móvil)Proyección.Aplicación de modelos arima para la proyección del recaudo del impuesto de industria, comercio, avisos y tableros ICAUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - PregradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coIn order to predict the behavior of tax collection on industrycommerceboards and advertising (ICA) for the year 2016the methodology of ARIMA models arises by their ability to predict short term. In order to achieve the goal there are four different phases: The first is identifyingdescribing the behavior of the historical collection and assess the possibility of converting the stationary series both seasonal and regular part. The second phase consists of the estimation modeltaking into account the criteria AICsmall errors and randomness of residuals. The third is validation: at this stage the 2015 collection whose figures already taken have been caused and as the screening of this year in contrast to ensure the quality of the model. The last phase is the predictionin which case the collection is expected by 2016taking a confidence interval of 80%. It should be noted that collection is made up the value to pay more interest on arrears and is expressed in thousands of pesos. The frequency of the time series analyzed bimonthly seasonal variation is a very important characteristic to be accounted for in a time series forecasting model. Traditionallythe role of autocorrelation function is used to identify if the process is stationary and then the partial autocorrelation function is used to detect the model. Onceguaranteed the stationarity of the process provides that the historical model behavior of the series is set in an . To validate if the selected model is appropriateBox Ljung testShapiro Wilk test and integrated periodogram are used. Concluding that the residuals are not correlatednormally distributed and randomly.Collection, Tax, Stationarity, Seasonality, Arima (Autoregressive Integrated Moving Average Model), Projection.info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)