Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Uzcátegui Aylwin, Carlos EnriqueGuerrero Mojica, José Guillermo2022-04-012022-04-0120212021https://noesis.uis.edu.co/handle/20.500.14071/9512Los espacios polacos universales han sido muy estudiados en los últimos años. En este trabajo presentaremos algunos resultados sobre este tema. Decimos que un espacio polaco X es universal si todos los espacios polacos están contenidos isométricamente en X. Estudiaremos ejemplos importantes de espacios universales como C [0;1], el espacio de las funciones continuas del intervalo [0;1] en R con la métrica uniforme. Decimos que un espacio métrico es ultra homogéneo si toda isometría entre subconjuntos finitos se puede extender a una isometría sobre todo el espacio. Estudiaremos la ultra homogeneidad de R y verificaremos que C [0;1] no es ultra homogéneo. Uno de nuestros objetivos principales es construir el espacio de Urysohn U y mostrar que es el único (salvo isometría) espacio polaco universal y ultra homogéneo. Realizaremos tres construcciones del espacio universal de Urysohn, usando ideas de Urysohn, Hausdorff y Katetov, para esto seguiremos los trabajos (Husek, 2008) y (Gao, 2009). Un grupo topológico es polaco si como espacio topológico es polaco. Verificaremos que Iso (X), el grupo de isometrías sobre un espacio polaco X con la topología de la convergencia puntual y la operación composición, es un grupo polaco. Decimos que un grupo polaco es universal si contiene a todos los grupos polacos isomorficamente como subgrupos cerrados. Verificaremos que Iso (U), el grupo de isometrías sobre el espacio de Urysohn, es universal.application/pdfspainfo:eu-repo/semantics/openAccessEspacio polacoEspacio de UrysohnGrupo polacoEspacio universalGrupo universalEspacios polacos universalesUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - MaestríaUniversidad Industrial de Santanderhttps://noesis.uis.edu.coUniversal Polish spaceshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)