Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)2022-03-142022-03-14https://noesis.uis.edu.co/handle/20.500.14071/8376This work focuses on the probabilistic analysis of slope stability and rigid shallow footing problems. For this purpose, mathematical models based on the Finite Element Method (FEM), Montecarlo (MC) method and Local Average Subdivision (LAS) procedure are studied. The LAS procedure is used to generate random fields, which properly represent the associated uncertainties in the properties of the materials. The FEM focuses on the numerical response of the problem in terms of displacements and stresses. The plasticity of the soil can be included via a visco-plastic algorithm beside a Mohr-Coulomb law. The LAS and MEF procedures are implemented in the framework of a MC analysis, where each MC execution requires several simulations of the problem at hand. This permits to quantify the failure probability of the system and report the most probable settlement to occur in the case of shallow foundations. After many executions of the numerical model, it is suggested that at least 4000 and 500 simulations are needed for the slope stability and shallow foundation problems, respectively, in order to obtain stable and reliable values. The obtained results show that the failure probability of the slope is relatively low and equal to 0.18, while the expected settlement of a shallow rigid foundation is around 1.96 cm.Este trabajo se enfoca en el análisis probabilístico de problemas de estabilidad de taludes y de asentamientos producidos en zapatas rígidas apoyadas en suelos deformables. Para este propósito son estudiados y combinados modelos matemáticos basados en el Método de los Elementos Finitos (MEF), método de Montecarlo (MC) y en el procedimiento de Subdivisión de Media Local (LAS). La metodología LAS se utiliza para generar campos estocásticos que representen apropiadamente las incertidumbres asociadas a las propiedades de los materiales. La utilización del MEF permite obtener la respuesta numérica del problema en términos de desplazamientos y tensiones. La plasticidad del suelo puede ser incluida a través de un algoritmo visco-plástico conjuntamente con el criterio de plastificación de Mohr-Coulomb. Los procedimientos LAS y MEF están incorporados dentro del marco de análisis del método de Montecarlo, donde cada análisis requiere la ejecución de varias simulaciones numéricas del problema en cuestión. Todo esto a fin de cuantificar una probabilidad de falla y el asentamiento más probable a ocurrir en el caso de problemas de cimentaciones. De los estudios realizados, se sugiere utilizar al menos 4000 y 500 simulaciones para los problemas del talud y zapata, respectivamente, a fin de obtener resultados estables y confiables. Los resultados obtenidos muestran que la probabilidad de falla para el talud estudiado está alrededor de 0.18, mientras que el asentamiento más probable a ocurrir para un sistema suelo-zapata en condiciones de servicio está alrededor de 1.96 cm. application/pdftext/htmlStochastic fieldfinite elementprobabilistic analysisgeotechnicsCampos estocásticoselementos finitosanálisis probabilísticogeotecniaAplicación de campos estocásticos en problemas de geotecniaApplication of stochastic fields in geotechnical problemsinfo:eu-repo/semantics/articlehttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)