Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Pertuz Arroyo, Said DavidBenítez Malaver, Carlos Santiago2024-03-0420202024-03-0420202020https://noesis.uis.edu.co/handle/20.500.14071/40092La densidad porcentual de seno (PD) es uno de los factores de riesgo más importantes asociados con el desarrollo del cáncer de seno. Por lo tanto, la estimación precisa de la PD es una tarea importante para la evaluación del riesgo de cáncer de seno basada en el análisis mamográfico. Para evitar variabilidad entre lectores se opta por el desarrollo de algoritmos de estimación de densidad automáticos. Sin embargo, la segmentación automática del tejido fibroglandular (FGT) es una tarea difícil ya que las características morfológicas tanto sutiles como complejas se proyectan en una Mamografía Digital de Campo Completo (FFDM). En este trabajo presentamos un algoritmo híbrido basado en una red completamente convolucional y un algoritmo de agrupamiento basado en intensidad para la estimación de tejido denso. Para fines de validación, utilizamos un conjunto de datos que se usan como referencia y consta de 582 mamografías con tejido denso segmentado manualmente por un radiólogo experto. Como resultado, la segmentación de tejido denso usando la selección de clúster demuestra una mejoría de 8% en la mediana del coeficiente de similitud de Dice (DSC) respecto a la segmentación dada por la red neuronal. las estimaciones de PD obtenidas con el método propuesto no arrojan diferencias estadísticamente significativas con respecto a las estimaciones de PD del radiólogo. Además, el método propuesto arroja unas medianas de DSC y error de PD de 0.795 y 0.077, respectivamente. Al compararse con un algoritmo clínicamente validado del estado del arte el algoritmo propuesto alcanzó un mayor rendimiento.application/pdfspahttp://creativecommons.org/licenses/by/4.0/Densidad Porcentual De SenoTejido FibroglandularMamografía DigitalRedes Completamente ConvolucionalesAutomatic dense tissue segmentation based on fully convolutional network for mammography imagesUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - PregradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coPercent DensityFibroglandular TissueDigital MammographyFully Convolutional NetworkAutomatic dense tissue segmentation based on fully convolutional network for mammography images *info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)