Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)Niño Gómez, Martha EugeniaPedraza Avella, Julio AndrésCarreño Lizcano, María Isabel2024-11-142024-11-142024-10-262024-10-26https://noesis.uis.edu.co/handle/20.500.14071/44724El agua de producción es considerada un desecho, ya que al entrar en contacto con los hidrocarburos y los diversos componentes de la formación geológica, adquiere características que la hacen tóxica e inadecuada para diversas actividades, como la agricultura e incluso la reinyección, si no recibe un tratamiento adecuado. Los tratamientos disponibles para aguas de producción presentan por lo general tres etapas, en el tratamiento primario se lleva a cabo la separación de los compuestos con mayores diferencias como lo son sólidos y grasas dispersas, la segunda etapa del proceso incluye el tratamiento de algunos compuestos disueltos y, por último, la tercera etapa es utilizada para eliminar los compuestos más difíciles. La fotoelectroquímica se propone como posible tecnología en el tratamiento de este tipo de efluentes. En esta tecnología el uso de materiales semiconductores fotoactivos, así como los procesos electroquímicos que los acompañan, se integran de forma tal que se evidencia una sinergia entre sus componentes. En este trabajo se desarrollaron materiales semiconductores basados en ZnO y Bi2O3 dopados con S, además de heterouniones de Bi2S3/Bi2O3. Los materiales presentaron un transporte eficiente de electrones desde el fotoánodo al cátodo logrando la generación de un alto flujo de electrones que permitieron la electrolisis fotoasistida del agua y el ciclo de oxidación-reducción de los electrolitos presentes en las aguas de producción, dando lugar a la formación de una mayor densidad de corriente y por tanto mayor cantidad de hidrógeno formado. La heterounión Bi2S3/Bi2O3 presentó las mejores propiedades fotoelectroquímicas, su uso fue evaluado en un reactor tipo filtro prensa con flujo, a escala banco, previamente diseñado por el grupo de investigación GIMBA. Durante el desarrollo de este trabajo se llevó a cabo la comparación de dos reactores fotoelectrolíticos, para lo cual se empleó dinámica de fluidos computacional (DFC) a través del software Comsol Multiphysics para la determinación de la distribución de tiempos de residencia. Para la validación experimental se estableció un método de seguimiento de un trazador, obteniendo como respuesta una señal de tipo escalón. Por último, se llevaron a cabo pruebas de producción de hidrógeno en los reactores UIS-GIMBA 1.0 y UIS-GIMBA 1.1 obteniendo valores cercanos a las 350 ppm durante 4 horas de operación continua para el reactor UIS-GIMBA 1.1.application/pdfspainfo:eu-repo/semantics/embargoedAccessProducción de hidrógeno a escala bancoHeterounionesAplicación fotoelectrocatalíticaDesarrollo de un sistema fotoelectroquímico para la producción de H2 a partir de agua contaminada con sulfuroUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - DoctoradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coBench-Scale Hydrogen ProductionHeterojunctionsPhotoelectrocatalytic ApplicationDevelopment of a Photoelectrochemical System for Hydrogen Production from Sulfur Contaminated Waterhttp://purl.org/coar/access_right/c_f1cfinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)