Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)2022-03-142022-03-14https://noesis.uis.edu.co/handle/20.500.14071/8227Internet has become the largest repository of human knowledge, and the amount of stored information increases day by day. This increase of information affects the levels of precision reported by Web search engines regarding  documents retrieved for the user. One strategy being used to address this problem is a focus on a personalized resource recovery. Several projects currently offer semantic methods for improving the relevance of search results  through the use of ontologies, natural language processing, knowledge based systems, query specification languages, and user profile, among others. Results are generally better than for web search engines that do not use these  techniques. However, the high cost of these improvements in precision relate to use of more complex algorithms in carrying out the search and which are more wasteful of computational resources. This article describes a semantic  query expansion model called MSEC, which is based mostly on the concept of semantic similarity, starting from domain ontologies and on the use of user profile in order to customize user searches so to improve their precision. In order to evaluate the proposed model, a software prototype was created. Preliminary experimental results show an improvement compared to the traditional web search approach. Finally the model was compared against the best  state of the art semantic search engine, called GoPubMed, for the MEDLINE collection. Internet se ha convertido en el mayor repositorio de conocimiento humano y la cantidad de información almacenada crece cada día más. Esto último repercute en el bajo nivel de precisión que reportan los sistemas de búsqueda Web respecto a los documentos que son recuperados para el usuario. Para enfrentar este problema, una de las estrategias utilizadas  es  la  recuperación  personalizada  de  recursos. Actualmente  existen  varios  proyectos  que  proponen  métodos semánticos para aumentar la relevancia de las búsquedas, a través del uso de ontologías, procesamiento de lenguaje natural, sistemas basados en conocimiento, lenguajes de especificación de consultas y perfil de usuario, entre otras. Los resultados generalmente son mejores que los obtenidos por  buscadores que no usan éstas técnicas.  Sin embargo, el costo que se paga por estas mejoras en precisión se centra en el uso de algoritmos más complejos en implementación y que consumen más recursos computacionales.  Este artículo describe un modelo semántico de expansión de consultas denominado MSEC, el cual está basado principalmente en el concepto de similitud semántica a partir de Ontologías de dominio y en el uso del perfil de usuario para personalizar las búsquedas y así mejorar la precisión de las mismas. Para evaluar el modelo propuesto se creó un prototipo software. Los resultados experimentales preliminares muestran una mejora respecto al enfoque tradicional de búsqueda. Finalmente se comparó con el mejor buscador semántico del estado del arte, llamado GoPubMed para la colección MEDLINE.application/pdftext/htmlWeb Searchquery expansiondomain ontologiesuser profilessemantic similarityBúsqueda  Webexpansión de consultaontologías de dominioperfiles de usuariosimilitud semánticaModelo semántico de expansión de consultas para la búsqueda web (MSEC)Semantic expansion of queries for web search (MSEC)info:eu-repo/semantics/articlehttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)