Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Barrero Pérez, Jaime GuillermoOlejua Santos, Oscar Danilo2023-05-312023-05-312023-05-302023-05-30https://noesis.uis.edu.co/handle/20.500.14071/14494La Organización de las Naciones Unidas para la Alimentación y la Agricultura reconoce la importancia de la piscicultura en la seguridad alimentaria, la reducción de la pobreza y la generación de empleo y promueve el desarrollo de prácticas sostenibles para mejorar la eficiencia y la productividad en los cultivos. Además, La industria piscícola en Colombia ha experimentado un crecimiento significativo en los últimos años, con un aumento notable en las exportaciones. En relación a esto, el conteo de peces se convierte en una herramienta crucial para el desarrollo adecuado de buenas prácticas, lo cual contribuye al crecimiento de la industria en el país y resulta clave para el éxito de la producción, sin embargo, hacerlo de forma manual es un obstáculo para el crecimiento sostenible de la industria. En este estudio, se presenta un algoritmo de conteo de peces que consta de tres partes. En primer lugar, se utiliza un módulo que emplea una de las dos topologías Yolov5x o Yolov5s de la arquitectura Yolov5 para la detección de peces fotograma a fotograma en un vídeo. En segundo lugar, se utiliza un módulo de asignación de identificadores en conjunto con un filtro de Kalman para realizar el seguimiento individual de cada pez durante su aparición en pantalla. Por último, se emplea un módulo para realizar el conteo de los peces identificados. Los resultados obtenidos alcanzan una precisión superior al 96.6 % con el modelo más rápido y un 98.8 % con el modelo más preciso. Además, se proponen sugerencias para mejorar el desempeño y la velocidad del sistema, y se plantean trabajos futuros.application/pdfspainfo:eu-repo/semantics/openAccessYOLOV5FILTRO DE KALMANCONTADORA DE OBJETOSVISIÓN ARTIFICIALPECESDISEÑO E IMPLEMENTACIÓN DE ALGORITMO DE DETECCIÓN Y CONTEO DE PECES USANDO INTELIGENCIA ARTIFICIAL.Universidad Industrial de SantanderTesis/Trabajo de grado - Monografía - PregradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coYOLOV5KALMAN FILTEROBJECT COUNTERARTIFICIAL VISIONFISHDESIGN AND IMPLEMENTATION OF A FISH DETECTION AND COUNTING ALGORITHM USING ARTIFICIAL INTELLIGENCE.http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)