Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)2022-03-142022-03-14https://noesis.uis.edu.co/handle/20.500.14071/7174In this paper we show that the embedding of a Wallman remainder need not be a Wallman extendible function. Even If the embedding is Wallman extendible, it need not be uniquely extendible. We show, however, that If the space X is Hausdorff and if the embedding of WX\X in WX is Wallman extendible, then the extension must be unique. Further, if X is regular and if the embedding of WX\X in WX Is Wallman extendible, then this embedding is a WC function.  application/pdfExtension of Embeddings of Wallman remaindersinfo:eu-repo/semantics/articlehttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)