Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Martínez Carrillo, FabioGalvis, Juan CarlosOlmos Rojas, Juan Andrés2024-03-0420202024-03-0420202020https://noesis.uis.edu.co/handle/20.500.14071/40453En el área de la visión por computador, la descripción de videos a partir de matrices de covarianza ha sido usada como un descriptor compacto para el reconocimiento de acciones, esto pues un video puede ser descrito por la media de las matrices de covarianza que describen a cada una de las imágenes que componen el video. Las matrices de covarianza resultan ser matrices simétricas semi definidas positivas y regularizando pueden ser vistas como matrices simétricas definidas positivas (SPD), las cuales forman una variedad riemanniana. El problema geométrico es entonces encontrar una media en este espacio, este ha sido estudiado a partir de definir diferentes métricas y con ellas plantear diferentes algoritmos para el cálculo de la media. En este proyecto se desarrolla una descripción matemática de este espacio mediante definiciones, construcciones y ejemplos de baja dimensión para tener una noción más clara del problema y posteriormente llevarlo a la práctica. Además, se plantean dos algoritmos: usando autovalores generalizados y otro haciendo una descomposición de Cholesky, esto con el fin de poder comparar teórica y computacionalmente los diferentes algoritmos existentes y los nuestros en problemas reales. Utilizando un conjunto de datos públicos de reconocimiento de acciones, se compararon 4 algoritmos para el cálculo de la media junto a los dos propuestos. El algoritmo propuesto, con autovalores generalizados, logró una exactitud del 69.95 %. Además, en experimentos complementarios con generadores aleatorios de matrices SPD, se evidenció una convergencia más rápida para el algoritmo Log-Euclidean.application/pdfspahttp://creativecommons.org/licenses/by/4.0/Reconocimiento De AccionesMatrices De CovarianzaMatrices Simétricas Definidas PositivasVariedad De RiemannMedia Geométrica.Cálculo de una media geométrica en el cono de las matrices simétricas semidefinidas positivasUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - PregradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coAction RecognitionCovariance MatricesPositive Definite MatricesRiemannian ManifoldGeometric Mean.Geometric means on the cone of symmetric positive semi-definite matricesinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)