Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)Uzcátegui Aylwin, Carlos EnriqueMartínez Díaz, Andrea2024-05-062024-05-062024-05-042024-05-04https://noesis.uis.edu.co/handle/20.500.14071/42321Un retículo L es un conjunto ordenado en el cual, para cualquier par de elementos, existe el supremo e ínfimo. Además, se dice que es un retículo complementado si, para cada elemento x en el retículo, existe y tal que el supremo e ínfimo de estos son el elemento máximo y el elemento mínimo del retículo, respectivamente. En este trabajo, se estudian algunos retículos complementados, en particular, A(X) el retículo de las topologías de Alexandroff, y CO(X) el retículo de los cuasiordenes sobre X. Se demuestra que estos son retículos isomorfos y se utiliza en la prueba de que A(X) es complementado. También presentamos un resultado obtenido por Menix y Richmond sobre un tipo especial de topologías de Alexandroff, FA(X) las topologías primales sobre X.application/pdfspainfo:eu-repo/semantics/openAccessRET´ICULOTOPOLOG´IAS DE ALEXANDROFFRET´ICULO COMPLEMENTADOComplementación en el retículo de topologías de AlexandroffUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - PregradoUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLATTICEALEXANDROFF TOPOLOGIESCOMPLEMENTED LATTICEComplementation in the lattice of Alexandroff topologieshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)