Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Arguello Fuentes, HenrySanchez Quiroga, Karen Yaneth2023-04-0620232023-04-0620192019https://noesis.uis.edu.co/handle/20.500.14071/14020Las imagenes espectrales proporcionan una gran cantidad de informaci ´ on que permite re- ´ alizar diversas tareas de procesamiento, como clasificacion, con gran precisi ´ on. Sin embargo, ´ debido a la alta dimensionalidad de los datos, procesar, transmitir y almacenar dicha informacion es costoso. En los ´ ultimos a ´ nos, la compresi ˜ on de im ´ agenes espectrales (CSI) ha ´ emergido como una nueva tecnica de adquisici ´ on que adquiere proyecciones codificadas de ´ la escena espectral aplicando diferentes patrones de codificacion, reduciendo considerable- ´ mente los costos de almacenamiento y transmision. Variando la estrategia de muestreo, varios ´ dispositivos CSI, con diferentes configuraciones opticas, se han desarrollado, donde la arqui- ´ tectura de camara de un solo p ´ ´ıxel (SPC) sobresale por bajo costo de implementacion. Tradi- ´ cionalmente, una reconstruccion completa de la escena subyacente es necesaria para realizar ´ cualquier tarea de procesamiento, lo que implica resolver un problema de optimizacion com- ´ putacionalmente costoso. El objetivo de este proyecto es realizar clasificacion de im ´ agenes ´ espectrales utilizando directamente mediciones CSI, evitando la reconstruccion completa de ´ la escena. Las mediciones de CSI se adquiriran mediante la implementaci ´ on en el laboratorio ´ de una SPC. Ademas, dada la baja resoluci ´ on espacial del sensor SPC, se propone obtener ´ informacion complementaria a trav ´ es de un sensor RGB auxiliar, que tiene una resoluci ´ on es- ´ pacial mas alta. Utilizando la informaci ´ on de ambos sensores, este trabajo propone dise ´ nar los ˜ patrones de codificacion SPC considerando la agrupaci ´ on de p ´ ´ıxeles con caracter´ısticas similares en la imagen RGB. Luego, es posible extraer caracter´ısticas de la escena para realizar una clasificacion directa. Por lo tanto, es posible obtener un mapa de clasificaci ´ on, utilizando ´ una maquina de soporte vectorial de manera r ´ apida y con alta precisi ´ on sin requerir una etapa ´ de reconstruccion. En general, se obtuvo una precisi ´ on global de ´ 95.41%, 97.29%, 97.72% y 99% utilizando la “Pavia University”, “Pavia Center”, “Salinas”, y “granos de cacao” adquiridos en un laboratorio optico, respectivamente.application/pdfspainfo:eu-repo/semantics/openAccessImagenes EspectralesResoluci ´ On EspacialMuestreo CompresivoSen- ´ Sado Espectral De ImagenesFusi ´ On De Im ´ AgenesClasificaci ´ On SupervisadaSuperpixeles.A supervised classification system of spectral images acquired with a single pixel optical architecture and side informationUniversidad Industrial de SantanderTesis/Trabajo de grado - Monografía - MaestríaUniversidad Industrial de Santanderhttps://noesis.uis.edu.coSpectral ImagingSpatial ResolutionCompressive SensingCompressive Spectral ImagingImage FusionSupervised ClassificationSuperpixels.A supervised classification system of spectral images acquired with a single pixel optical architecture and side information. *http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)