Doctorado en Ciencias de la Computación
Permanent URI for this collection
Browse
Browsing Doctorado en Ciencias de la Computación by Subject "Compressive sensing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Diseño de aperturas codificadas en un sistema tridimensional de superresolución de tomografía computarizada compresiva(Universidad Industrial de Santander, 2022-03-31) Mojica Rodríguez, Edson Fabián; Argüello Fuentes, Henry; Rodríguez Ferreira, Julián Gustavo; Ramírez Silva, Ana Beatriz; Rueda Chacón, Hoover Fabián; Meza Narváez, Pablo Francisco; Ramírez Rondón, Juan MarcosEl muestreo compresivo (MC) en tomografía computarizada (TC) de rayos-X se ha convertido en una herramienta esencial para conocer la estructura interna de un objeto a través de un procedimiento no invasivo. Estos enfoques utilizan aperturas codificadas (AC) a lo largo de múltiples ángulos de captura para bloquear una parte de la energía de rayos-X que viaja hacia los detectores. Sin embargo, la mayoría de los diseños de AC se centran en sistemas de haz en abanico de múltiples disparos, que manejan una proporción de 1:1 entre las características de AC y los elementos detectores. En consecuencia, la resolución de la imagen está sujeta al tamaño de píxel del detector. Como alternativa, en lugar de utilizar un arreglo de detectores más denso, esta tesis presenta un método para diseñar los patrones de AC en un sistema de haz cónico (CBTC) compresivo bajo una configuración de súper resolución (SR), donde la AC de alta resolución está diseñada para obtener imágenes de alta resolución de proyecciones de menor resolución. El diseño de AC explota el teorema de Gershgorin al minimizar sus radios, mejorando el condicionamiento de la matriz del sistema. Las simulaciones muestran que el diseño obtenido logra imágenes de alta resolución a partir de detectores de menor resolución en un escenario SR-CBTC de disparo único, donde se mejora el PSNR de las imágenes reconstruidas en comparación con patrones AC no diseñados. Además, esta tesis amplía su alcance principal para incluir un diseño de AC en un sistema imagenes espectrales conocido como CASSI, que permite aplicar de manera eficiente el concepto de MC para adquirir información espacio-espectral de una escena. La optimización incluye una máscara litográfica de colores en movimiento, en donde se alcanza una calidad de reconstrucción similar en comparación con un diseño de AC de última generación.Item Diseño y optimización de un sistema compresivo para la adquisición de video espectral(Universidad Industrial de Santander, 2022-03-31) León López, Kareth Marcela; Argüello Fuentes, Henry; Romo Buchelli, David Edmundo; Pertuz Arroyo, Said David; Correa Pugliese, Claudia Victoria; Marrugo Hernández, Andrés Guillermo; Vera Rojas, Esteban MauricioLos videos espectrales contienen información espacial y espectral de una escena en el tiempo, implicando un conjunto de cubos de datos tridimensionales. Los sistemas de adquisición de video espectral compresivo (CSVS) adquieren de manera comprimida los videos mediante la codificación y proyección de cada cuadro espectral en un sensor bidimensional, resultando en un conjunto de cuadros espectrales comprimidos. El video es reconstruido a partir de estas medidas comprimidas usando un algoritmo de recuperación, asumiendo que la señal tiene una representación escasa en una base de transformación. La calidad del video espectral reconstruido depende de la base de transformación, la apertura codificada (CA) usada en el sistema CSVS y el método de reconstrucción. Hasta la fecha, se han realizado diferentes esfuerzos para incrementar la calidad de reconstrucción de estos videos tal como agregar una cámara extra para adquirir información adicional. Sin embargo, éstas soluciones son costosas o ineficientes en aplicaciones prácticas. Según la literatura, es posible obtener un alto rendimiento diseñando conjuntamente la base, la CA y el procedimiento de recuperación. Sin embargo, hasta donde se tiene conocimiento, no existe trabajos previos sobre el diseño conjunto de éstas etapas en sistemas CSVS, donde la información espectral es valiosa. Esta tesis estudia diferentes estrategias para diseñar y optimizar un sistema CSVS para mejorar la calidad de los cuadros espectrales reconstruidos. Una primera estrategia implica el diseño conjunto de la base de transformación y del método de recuperación usando una representación tensorial de orden superior. Y una segunda estrategia implica la optimización del sistema usando redes neuronales convolucionales, aprovechando la creciente cantidad de datos disponibles en la comunidad científica. Los experimentos numéricos sobre diferentes bases de datos a partir de las metodologías propuestas muestran calidades de reconstrucción superiores en comparación con técnicas de la literatura.