Nest and Complete Accumulation Point Compactness ot the Product of Topological Spaces

dc.creatorAbian, Alexander
dc.date1996-10-10
dc.date.accessioned2022-03-14T20:23:11Z
dc.date.available2022-03-14T20:23:11Z
dc.description  Based on the definition of nest compactness (Ie., the intersection of a nest of nonempty closed sets is nonempty) we show that the product of the two nest compáct topological spaces is nest compact, and, this without invoking the compactness of the product of two compact topological spaces based on the classical definition of compactness (i.e., every open cover has a finit subcover). The same is done based on the definition of complete accumulation point compactness. The latter, by Remark 5, extends easily to the infinite products of topological spaces.  es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.identifierhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/991
dc.identifier.urihttps://noesis.uis.edu.co/handle/20.500.14071/7136
dc.languagespa
dc.publisherUniversidad Industrial de Santanderes-ES
dc.relationhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/991/1353
dc.relationhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/991/1354
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.sourceRevista integración, temas de matemáticas; Vol. 14 Núm. 2 (1996): Revista Integración, temas de matemáticas; 69-73es-ES
dc.sourceREVISTA INTEGRACIÓN; v. 14 n. 2 (1996): Revista Integración, temas de matemáticas; 69-73pt-BR
dc.source2145-8472
dc.source0120-419X
dc.titleNest and Complete Accumulation Point Compactness ot the Product of Topological Spaceses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.type
Files