Extension of Embeddings of Wallman remainders

dc.creatorBarreto, Sonia
dc.creatorCuevas, Laura
dc.creatorHajek, Darreil W.
dc.date1991-10-25
dc.date.accessioned2022-03-14T20:23:13Z
dc.date.available2022-03-14T20:23:13Z
dc.descriptionIn this paper we show that the embedding of a Wallman remainder need not be a Wallman extendible function. Even If the embedding is Wallman extendible, it need not be uniquely extendible. We show, however, that If the space X is Hausdorff and if the embedding of WX\X in WX is Wallman extendible, then the extension must be unique. Further, if X is regular and if the embedding of WX\X in WX Is Wallman extendible, then this embedding is a WC function.  es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/1041
dc.identifier.urihttps://noesis.uis.edu.co/handle/20.500.14071/7174
dc.languagespa
dc.publisherUniversidad Industrial de Santanderes-ES
dc.relationhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/1041/1420
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.sourceRevista integración, temas de matemáticas; Vol. 9 Núm. 2 (1991): Revista Integración, temas de matemáticas; 73-83es-ES
dc.sourceREVISTA INTEGRACIÓN; v. 9 n. 2 (1991): Revista Integración, temas de matemáticas; 73-83pt-BR
dc.source2145-8472
dc.source0120-419X
dc.titleExtension of Embeddings of Wallman remainderses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.type
Files