Detección del ruido de dispersión en datos sísmicos multicomponente usando aprendizaje automático
No Thumbnail Available
Date
2022-11-21
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
La generación de imágenes sísmicas de estructuras complejas en zonas montañosas es uno de los principales desafíos de la exploración sísmica terrestre. Las señales de reflexión deseadas son enmascaradas por las ondas sísmicas dispersadas por heterogeneidades cerca de la superficie logrando que las ondas se superpongan en frecuencia y los filtros convencionales sean poco precisos, por ello, se propone unmétodo de clasificación de datos sintéticos de onda sísmica dispersada, los cuales se procesarán a través de unmétodo de aprendizaje automático. Para esto se modelarán las ondas dispersadas mediante un modelado numérico 2D. Se seleccionarán ciertos atributos sísmicos para resaltar la información geofísica de los datos tales como: frecuencia, velocidad de propagación, polarización, entre otros. Una vez con los atributos seleccionados junto con un algoritmo de clasificación, los datos se dividirán en grupos automáticamente y a partir de esto se inferirá la relación señal-ruido.
Description
Keywords
Dispersión, Estrato somero, Aprendizaje automático, Modelado numérico, Atributo sísmico