The Classical Isotropic bi-Dimensional Oscilator in the Eisenhart Formulation of Classical Mechanics
dc.creator | Percoco, U. | |
dc.creator | Nuñez, L. A. | |
dc.creator | Zambrano, M. | |
dc.date | 2007-04-30 | |
dc.date.accessioned | 2022-03-14T20:23:02Z | |
dc.date.available | 2022-03-14T20:23:02Z | |
dc.description | Accordingly with the general theory of relativity, the motion of a particle by the only action of inertia and gravity is described by a space-time geodesic. We use the Eisenhart geometric formulation of classical mechanics to establish a correspondence between geodesics and paths in phase space of the classical bi-dimensional isotropic oscillator. The Killing vectors and its associated constants of motion are presented and compared with nonNoetherian motion constant calculated by S. Hojman and collaborators. Keywords: Geometric Mechanics, Geometrical and tensorial methods, Formalisms in classical mechanics. | en-US |
dc.description | De acuerdo con la Teoría de la Relatividad General, el movimiento de partículas por acción de su inercia y la gravedad es descrito por geodésicas en el espacio-tiempo. Utilizamos la formulación Geométrica de Eisenhart de la Mecánica Clásica para establecer una correspondencia entre geodésicas y trayectorias en el espacio de fases del oscilador clásico isótropo. Se presentan los vectores de Killing y las constantes de movimiento asociadas, se comparan con las constantes de movimiento no noetheriano calculadas por S. Hojman y colaboradores. | es-ES |
dc.format | application/pdf | |
dc.identifier | https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/261 | |
dc.identifier.uri | https://noesis.uis.edu.co/handle/20.500.14071/7058 | |
dc.language | spa | |
dc.publisher | Universidad Industrial de Santander | es-ES |
dc.relation | https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/261/462 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.license | Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) | |
dc.source | Revista integración, temas de matemáticas; Vol. 25 Núm. 1 (2007): Revista Integración, temas de matemáticas; 39-44 | es-ES |
dc.source | REVISTA INTEGRACIÓN; v. 25 n. 1 (2007): Revista Integración, temas de matemáticas; 39-44 | pt-BR |
dc.source | 2145-8472 | |
dc.source | 0120-419X | |
dc.subject | Geometric Mechanics | en-US |
dc.subject | Geometrical and tensorial methods | en-US |
dc.subject | Formalisms in classical mechanics | en-US |
dc.subject | Geometric Mechanics | es-ES |
dc.subject | Geometrical and tensorial methods | es-ES |
dc.subject | Formalisms in classical mechanics | es-ES |
dc.title | The Classical Isotropic bi-Dimensional Oscilator in the Eisenhart Formulation of Classical Mechanics | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type |