Escuela de Matemáticas
Permanent URI for this community
Browse
Browsing Escuela de Matemáticas by Subject "2) —admissibles"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Variedades bandera asociadas a algebras de lie de tipo ci(Universidad Industrial de Santander, 2012) Pérez Martínez, Elizabeth; Pinzón Duran, SofiaSea una variedad bandera dotada de una métrica A y una f -estructura F. Se dice que la f—estructura F es (1,2)-admisible, si existe una métrica A tal que la f-variedad (F, F, A) sea (1, 2) —simpléctica. Una variedad bandera es un espacio homogéneo G/C(S), en el que G es un grupo de Lie complejo y C(S) es el centralizador de un toro no necesariamente maximal. Cuando S es maximal se dice que la variedad bandera F es maximal. En el caso de la variedad bandera maximal clásica F(n) se especifican los resultados hallados por Sofía Pinzón en los que se estudiaron las condiciones necesarias y suficientes para que la variedad bandera maximal, dotada de una f—estructura y una métrica invariante ds%, sea (1, 2)-simpléctica, teniendo en cuenta que estas variedades bandera corresponden a las asociadas a álgebras de Lie semisimples de rango menor ó igual a tres. Estudiamos los teoremas y definiciones que caracterizan una variedad bandera maximal, caracterizamos los sistemas de raíces, la base de weyl, las f-estructuras, la métrica invariante, la conexión riemanniana y la forma de Kahlér. Analizamos el álgebra de Lie semisimple finita de tipo C1, la representación de una subálgebra de Cartan, y finalmente hallamos las f—estructuras y las métricas invariantes que es posible definir en las variedades bandera maximales asociadas al álgebra de Lie Cy, de forma tal que una variedad (TF, F, A) sea (1,2) -simpléctica.