An introduction to homogeneous continua
No Thumbnail Available
Date
Authors
Advisors
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Description
Un continuo es un espacio métrico, compacto y conexo. Un continuo X es homogéneo si para cualesquiera dos de sus puntos x1 y x2 de X, existe un homeomorfismo h: X -> X tal que h(x1) = x2. Presentaremos un poco de historia, ejemplos y propiedades de este tipo de continuos. Daremos una demostración del Teorema de descomposición aposindética de Jones.
A continuum is a compact, connected, metric space. A continuum X is homogeneous provided that for each pair of points x1 and x2 of X, there exists a homeomorphism h: X->X such that h(x1) = x2. We present a bit of history, examples and properties of this kind of continua. We give a proof of Jones's Aposyndetic Decomposition Theorem.
A continuum is a compact, connected, metric space. A continuum X is homogeneous provided that for each pair of points x1 and x2 of X, there exists a homeomorphism h: X->X such that h(x1) = x2. We present a bit of history, examples and properties of this kind of continua. We give a proof of Jones's Aposyndetic Decomposition Theorem.
Keywords
Circle of pseudo-arcs, continuum, Hilbert cube, Menger universal curve, homogeneous space, monotone map, Jones's set function T, pseudo-arc, Círculo de pseudoarcos, continuo, cubo de Hilbert, curva universal de Menger, espacio homogéneo, función monótona, función T de Jones, pseudoarco