Modelo de detección de fallas en motores Caterpillar 3508b usando máquinas de soporte vectorial (SVM) y análisis de componentes principales (PCA) en muestras de aceite
dc.contributor.advisor | Borrás Pinilla, Carlos | |
dc.contributor.advisor | Díaz Guerrero, Pedro José | |
dc.contributor.advisor | Galindo Gámez, Oscar Enrique | |
dc.contributor.author | Aroca Fragozo, Oscar Iván | |
dc.date.accessioned | 2023-04-06T15:31:42Z | |
dc.date.available | 2023 | |
dc.date.available | 2023-04-06T15:31:42Z | |
dc.date.created | 2019 | |
dc.date.issued | 2019 | |
dc.description.abstract | El objetivo principal de este trabajo consiste en implementar técnicas avanzadas de detección y diagnóstico de fallas basándose en sistemas de aprendizaje, particularmente usar métodos estadísticos (análisis de componentes principales) y sistemas de aprendizaje (máquinas de soporte vectorial) para la detección y diagnóstico de los siguientes modos de falla: Combustión incorrecta, fuga del sistema de refrigeración, paso de gases al Carter de la cámara de combustión Blow-By, ingreso de partículas de medio ambiente, éstos cuatro modos de falla son los que más afectan los motores Caterpillar 3508B y se diagnostican aplicando la tribología en las muestras de aceite 15W40. La Tribología se considera una ciencia aplicable que conjuga toda una serie de elementos importantes en el diseño, fabricación y operación de las máquinas como la Fricción, naturaleza de los materiales, rugosidad, desgaste, lubricación, consumo de energía y medio ambiente, la tribologia detecta y diagnostica el estado de la falla en los componentes, según si la tendencia de uno o varios elementos y componentes propios del aceite de la maquina o externos a él, aumenta o disminuye de esta forma se pueden programar la reparación o cambio en una ventana de oportunidad. El algoritmo de PCA se implementa para reducir y clasificar la dimensión de la base de datos Historial tribología aceite 15W40, validando los vectores etiqueta de clases los cuales sirven de entrenamiento para el algoritmo de la SVM multiclase uno contra uno y uno contra todos, el mejor desempeño en cuanto a precisión y tiempo de procesamiento se obtuvo con los Kernel function Lineal con un método multiclase uno contra todos, el accuracy obtenido es de 99.9%. | |
dc.description.abstractenglish | The main objective of this work is to implement advanced detection and fault diagnosis techniques based on learning systems, particularly using statistical methods (analysis of principal components) and learning systems (vector support machines) for the detection and diagnosis of following failure modes: Incorrect combustion, refrigeration system leak, gas passage to the Blow-By combustion chamber Carter, environmental particulate entry, these four failure modes are the most affecting the Caterpillar 3508B engines and they are diagnosed by applying the tribology in the 15W40 oil samples. Tribology is considered an applicable science that combines a series of important elements in the design, manufacture and operation of machines such as friction, nature of materials, roughness, wear, lubrication, energy consumption and environment, the tribology detects and diagnoses the state of the failure in the components, according to whether the tendency of one or several elements and components of the oil of the machine or external to it, increases or decreases in this way can be programmed the repair or change in a window of opportunity. The PCA algorithm is implemented to reduce and classify the database dimension History tribology oil 15W40, validating the class tag vectors which serve as training for the algorithm of the SVM multiclase one against one and one against all, the best performance in terms of accuracy and processing time was obtained with the Kernel Function Linear with a one-to-all multiclass method, the accuracy obtained is 99.9%. | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Gerencia de Mantenimiento | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Industrial de Santander | |
dc.identifier.reponame | Universidad Industrial de Santander | |
dc.identifier.repourl | https://noesis.uis.edu.co | |
dc.identifier.uri | https://noesis.uis.edu.co/handle/20.500.14071/13924 | |
dc.language.iso | spa | |
dc.publisher | Universidad Industrial de Santander | |
dc.publisher.faculty | Facultad de Ingenierías Fisicomecánicas | |
dc.publisher.program | Maestría en Gerencia de Mantenimiento | |
dc.publisher.school | Escuela de Ingeniería Mecánica | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.license | Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Tribología | |
dc.subject | Motor Caterpillar 3508 | |
dc.subject | Análisis de componentes principales (PCA) | |
dc.subject | Máquinas de soporte vectorial (SVM) | |
dc.subject.keyword | Tribology | |
dc.subject.keyword | Motor Caterpillar 3508 | |
dc.subject.keyword | Analysis of Main Components (PCA) | |
dc.subject.keyword | Vectorial Support Machines (SVM) | |
dc.title | Modelo de detección de fallas en motores Caterpillar 3508b usando máquinas de soporte vectorial (SVM) y análisis de componentes principales (PCA) en muestras de aceite | |
dc.title.english | Model of detection of faults in caterpillar 3508b engines using vectorial support machines (svm) and analysis of main components (pca) in oil samples.3 | |
dc.type.coar | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |
dc.type.hasversion | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | |
dspace.entity.type |
Files
Original bundle
1 - 4 of 4
No Thumbnail Available
- Name:
- Carta de autorización.pdf
- Size:
- 132.39 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Nota de proyecto.pdf
- Size:
- 73.53 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Carta de confidencialidad.pdf
- Size:
- 241.26 KB
- Format:
- Adobe Portable Document Format