Metodos de aprendizaje computacional para la detección automática de afectaciones ionosféricas en sistemas de aumentación terrestres

No Thumbnail Available
Date
2018
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Los usuarios de aviaci´on civil necesitan de los sistemas de posicionamiento global como GPS para dar soporte a sus operaciones. Las anomal´ıas ionosf´ericas son una de las principales amenazas para la seguridad y disponibilidad de las medidas de posici´on que provee el sistema GPS. La ion´osfera es una capa de la atm´osfera que se encuentra cargada con electrones, estos afectan todas las comunicaciones por ondas de radio, debido a que refractan parte de las se˜nales que atraviesan este medio. A trav´es de una metodolog´ıa para corregir las se˜nales de c´odigo y fase captadas por receptores de doble frecuencia, se calculan y preprocesan los retrasos ionosf´ericos en las se˜nales de pseudorango, seguido del c´alculo de gradientes entre pares de receptores cercanos alrededor de un aeropuerto para estimar el comportamiento de la ionosfera en el ´area. Sin embargo, despu´es de este proceso existen falsos positivos entre los resultados. En este trabajo se propone como soluci´on la creaci´on de conjuntos de datos y el dise˜no de caracter´ısticas de eventos ionosf´ericos para entrenamiento de modelos de aprendizaje computacional, que clasifiquen cada caso como verdadero o falso. De esta manera, se provee una soluci´on de bajo costo para evaluar la ion´osfera en una regi´on previo a la instalaci´on de estaciones de monitoreo. Con los datos recolectados se construye un conjunto de descriptores de las se˜nales captadas por los receptores adem´as de informaci´on de clima espacial como actividad solar y geomagn´etica. Los receptores utilizados para construir el conjunto de datos pertenecen a redes de Ecuador, Estados Unidos y Espa˜na. Los resultados sugieren que es posible automatizar la validaci´on de eventos ionosf´ericos extremos con un desempe˜no en la m´etrica f2 de hasta 93 %.
Description
Keywords
Aprendizaje Computacional, Anomal´Ias Ionosfericas, Gnss, Gbas, Análitica De Datos.
Citation