Diseño e Implementación de un Algoritmo para la Reducción de los Efectos de la Variabilidad Espectral en la Fusión de Imágenes Multiespectrales e Hiperespectrales
Loading...
Date
2022-09-20
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Las técnicas de fusión de imágenes han abordado el problema de formación de imágenes de alta resolución a partir de información de múltiples sensores como cámaras hiperespectrales (HS) y multiespectrales (MS), donde los primeros ofrecen alta resolución espectral y los segundos aportan alta resolución espacial. En la práctica, los espectros observados a partir de muestras de un mismo material no son idénticos. Adicionalmente, existen variaciones en la información espectral dentro de experimentos controlados en los laboratorios. Tales variaciones en forma y escala de las firmas espectrales de un mismo material en diferentes píxeles a lo largo de una imagen HS se conoce como variabilidad espectral. Recientemente, la comunidad científica se ha interesado en los efectos de la variabilidad espectral debido a que representan una fuente de error en el análisis de imágenes HS. Sin embargo, los enfoques clásicos de fusión de imágenes MS e imágenes HS aún no han abordado el fenómeno de la variabilidad espectral. Por otro lado, recientes desarrollos de sensores y métodos de procesamiento de datos han conllevado a un mayor uso de imágenes espectrales, principalmente MS e HS en la agricultura mundial. En un contexto colombiano, el desarrollo de aplicaciones e investigaciones científicas de técnicas de teledetección hiperespectral son requeridas en la agricultura, dado el gran potencial agrícola de Colombia por sus condiciones geográficas y climáticas. No obstante, el estudio de la vegetación usando información espectral es afectado por la variabilidad espectral. Por lo tanto, en esta tesis doctoral se diseñó e implementó un algoritmo para la reducción de los efectos de la variabilidad espectral en la fusión de imágenes MS y HS basado en el desmezclado espectral. La principal contribución consiste en el desarrollo de un algoritmo de fusión que combina el modelo de degradación espacio-espectral con el modelo de variabilidad espectral. Particularmente, el desempeño del algoritmo propuesto fue evaluado sobre datos semi-sintéticos, datos reales de escenas de cultivos agrícolas en Colombia y datos espectrales adquiridos en laboratorio, obteniendo una ganancia de hasta 4 dB en términos de la calidad de las imágenes fusionada en comparación con los métodos del estado del arte de fusión de imágenes MS-HS.
Description
Keywords
Variabilidad Espectral, Firma espectral, Imágenes multiespectrales, Imágenes hiperespectrales, Fusión MS-HS