Discriminación del ruido de fondo en miografía usando técnicas de aprendizaje automatizado
No Thumbnail Available
Date
2021
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
La muografía es una técnica no-invasiva que se utiliza para escanear grandes estructuras antrópicas o naturales. Su principio de funcionamiento consiste en la medición del flujo de muones que cruzan la estructura en diferentes direcciones. Esta técnica tiene aplicaciones en campos tales como: mediciones subterráneas, arqueología, detección de materiales ocultos en contenedores, reactores y residuos nucleares. Esta técnica se ve afectada por una subestimación de la densidad del objeto, producto del ruido de fondo (falsos-positivos) que se pueden clasificar en: partículas cargadas procedentes de lluvias aéreas extensas (EAS), las partículas que inciden desde la parte trasera del detector, los muones de baja energía que son dispersados por la superficie del volcán y eventos de múltiple partícula. Para la eliminación del ruido se han desarrollado técnicas pasivas como la instalación de paneles absorbentes, para filtrar las partículas de baja energía y el aumento de la cantidad de paneles sensibles, para disminuir la probabilidad de detectar eventos combinacionales. En la actualidad se plantea la eliminación del ruido de fondo con sistemas ToF e identificación de partículas1 . En este trabajo se desarrolla un clasificador de aprendizaje automatizado que disminuya las principales fuentes de ruido que pueden afectar la muografía, basados en los datos del detector MuTe. El proyecto se divide en 2 partes: En la primera instancia se desarrolla un clasificador de aprendizaje supervisado para separar la componente electromagnética, muónica y de múltiple partícula. En la segunda parte se desarrolla un clasificador de aprendizaje no-supervisado el cual discrimina los muones de bajo momentum (< 1 GeV/c).
Description
Keywords
Rayos cósmicos, Muografía, Aprendizaje automatizado, Ruido de fondo.