Metodo variacionales y el modelo de keller-segel estacionario
dc.contributor.advisor | Pérez López, Jhean Eleison | |
dc.contributor.author | Jiménez Jerez, Sergio Andrés | |
dc.date.accessioned | 2023-04-06T20:41:02Z | |
dc.date.available | 2023 | |
dc.date.available | 2023-04-06T20:41:02Z | |
dc.date.created | 2019 | |
dc.date.issued | 2019 | |
dc.description.abstract | El sistema de Keller-Segel es un modelo de quimiotaxis que físicamente modela la interacción entre un tipo de organismos y un químico. Este modelo es descrito por medio de un sistema de ecuaciones diferenciales parciales con incógnitas u y v, que representan la concentración de células y la concentración de químico, respectivamente. Más específicamente, se considera el modelo D1∆u − χ∇ · (u∇φ(v)) = 0 en Ω, D2∆v − av + bu = 0 en Ω, ∂u ∂ν = ∂v ∂ν = 0 sobre ∂Ω. El objetivo de este trabajo es demostrar la existencia de soluciones físicamente consistentes para este modelo, esto es, soluciones clásicas positivas y no constantes. Para ello, tomando la función φ(v) = v, se tiene que la primera ecuación se cumple si u verifica la relación u = cepv, así, de la segunda ecuación vemos que el sistema es reducido a una única ecuación en términos de v. Para resolver dicha ecuación tratamos un problema más general, el cual está asociado con el funcional J(u) = 1 2 _x0012_ 2 Z Ω |∇u| 2 dx + c Z Ω u 2 dx_x0013_ − Z Ω H(u)dx. Es mostrado que obtener soluciones del problema diferencial es equivalente a mostrar la existencia de puntos críticos de dicho funcional, para ello se hace uso del Teorema del paso de la montaña. Finalmente, de la teoría de los operadores elípticos concluimos que dichos puntos críticos son no negativos y no constantes. | |
dc.description.abstractenglish | The Keller-Segel system is a chemotaxis model that physically models the interaction between a type of organisms and a chemical. This model is described by a system of partial differential equations with unknowns u and v, which represent the concentration of cells and the concentration of chemical, respectively. More specifically, the model is considered D1∆u − χ∇ · (u∇φ(v)) = 0 in Ω, D2∆v − av + bu = 0 in Ω, ∂u ∂ν = ∂v ∂ν = 0 on ∂Ω. The objective of this work is to demonstrate the existence of physically consistent solutions for this model, this is, positive and non-constant classical solutions. To do this, taking the function φ(v) = v, the first equation must be fulfilled if you verify the relation u = cepv. Therefore, from the second equation we see that the system is reduced to a single equation in terms of v. To solve this equation, we treat a more general problem, which is associated with the functional J(u) = 1 2 _x0012_ 2 Z Ω |∇u| 2 dx + c Z Ω u 2 dx_x0013_ − Z Ω H(u)dx. It is shown that obtaining solutions to the differential problem is equivalent to showing the existence of critical points of said functional, for this purpose the Mountain Pass Theorem is used. Finally, based on the theory of elliptical operators, we conclude that these critical points are not negative and are not constant | |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Matemático | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Industrial de Santander | |
dc.identifier.reponame | Universidad Industrial de Santander | |
dc.identifier.repourl | https://noesis.uis.edu.co | |
dc.identifier.uri | https://noesis.uis.edu.co/handle/20.500.14071/14109 | |
dc.language.iso | spa | |
dc.publisher | Universidad Industrial de Santander | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.program | Matemáticas | |
dc.publisher.school | Escuela de Matemáticas | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.license | Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Espacios De Funciones | |
dc.subject | Quimiotaxis | |
dc.subject | Métodos Variacionales | |
dc.subject | Teorema Del Paso De La Montaña | |
dc.subject | Modelo De Keller-Segel. | |
dc.subject.keyword | Function Spaces | |
dc.subject.keyword | Chemotaxis | |
dc.subject.keyword | Variational Methods | |
dc.subject.keyword | The Mountain Pass Theorem | |
dc.subject.keyword | Keller-Segel Model. | |
dc.title | Metodo variacionales y el modelo de keller-segel estacionario | |
dc.title.english | Variational methods and the stationary keller-segel model | |
dc.type.coar | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |
dc.type.hasversion | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | |
dspace.entity.type |
Files
Original bundle
1 - 3 of 3
No Thumbnail Available
- Name:
- Carta de autorización.pdf
- Size:
- 194.14 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Documento.pdf
- Size:
- 642.55 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Nota de proyecto.pdf
- Size:
- 88.74 KB
- Format:
- Adobe Portable Document Format