Metodología para el diagnóstico de la causa de huecos de tensión : análisis de fallas

No Thumbnail Available
Date
2009
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Este trabajo de grado tiene como propósito brindar nuevas herramientas de fácil implementación para el análisis de fallas. Se describe una metodología que, mediante el uso de algunos descriptores, permite el diagnóstico de la causa de huecos de tensión. La metodología permite determinar si la falla fue ocasionada por perturbaciones en la red, arranque de motores de inducción, saturación de transformadores, o por la energización de un banco de capacitores. El análisis previo a la elaboración de la metodología consiste en una clasificación detallada de los registros suministrados por la empresa de distribución de energía eléctrica de España ENDESA, la cual suministró una base de datos con huecos de tensión asociados a fallas de red y energización de transformadores. Los huecos de tensión asociados a arranque de motor de inducción y energización de bancos de capacitores fueron obtenidos utilizando ATPEMPT. A partir de los registros proporcionados por ENDESA, se realiza una formulación de nuevos descriptores planteados con el propósito de extraer una mayor información sobre el hueco de tensión. Este conjunto de descriptores se complementa con otros ya formulados en la literatura. Posteriormente se aplica un análisis estadístico multivariable a los descriptores planteados inicialmente para verificar la existencia de grupos o clases de acuerdo a cada una de las causas de huecos de tensión asociadas. Con el análisis estadístico se seleccionan los descriptores que resultan relevantes de acuerdo al tipo de causa. Con estos descriptores y haciendo uso técnicas de aprendizaje automático se diseña el algoritmo. La validación de la metodología se realiza en MATLAB tomando como señales de entrada los registros de tensión y de corriente, suministrados por ENDESA y los obtenidos por simulación.
Description
Keywords
Huecos de Tensión, Calidad de Energía, Análisis Multivariable, Técnicas de Aprendizaje Automático.
Citation