Control predictivo robusto de glucosa en pacientes con diabetes mellitus tipo I: Validación in silico

Loading...
Thumbnail Image
Date
2021
Authors
Padilla Toloza, David Alberto
Advisors
Carreño Zagarra, José Jorge
Villamizar Mejía, Rodolfo
Evaluators
Sepúlveda Sepúlveda, Franklin Alexander
Borrás Pinilla, Carlos
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
En este proyecto de grado se propone un esquema de control para la dosificación de insulina en pacientes T1DM, que mantenga un perfil de glucosa saludable, evitando condiciones de hiperglucemia e hipoglucemia, cuyo modelo dinámico presenta fuertes retardos, no linealidades e incertidumbre paramétrica. Para enfrentar este problema de control se planteó la combinación de un controlador predictivo para seguir una referencia con un estimador basado en clasificadores. El controlador predictivo consta dos partes. La primera, cancela los efectos de la perturbación en el momento en que es detectada, aplicando una acción feed-foward; la segunda calcula la acción de control necesaria para seguir una referencia, que busca que la glucosa regrese a su estado basal imitando un perfil saludable para el paciente. Finalmente, se propusieron tres esquemas de controlador predictivo, el primero basado en el algoritmo QDMC, el segundo basado en realimentación de estados con modificaciones en el cálculo de las predicciones y el tercero es una versión del segundo con integrador. El esquema de control propuesto busca ser apto para la implementación real, por lo que se consideran efectos del hardware tales como, cuantización, muestreo, ruido y saturación. Se validaron in silico los tres controladores usando modelos dinámicos dados por el simulador T1DMS, cuyo modelo es aceptado por la FDA, para una cohorte de 10 pacientes adultos. Dicha validación se hizo para modelo nominal e incierto, con el fin de medir el desempeño dinámico y robustez de los controladores. Se encontró que el desempeño dinámico de los dos primeros controladores fue adecuado, mientras que el desempeño del tercero no asegura estabilidad. Finalmente, el estimador demostró ser robusto ante la presencia de ruido y el error de estimación de carbohidratos fue menor al 10%, sin embargo, los 15 minutos que toma en estimar afectan el desempeño del segundo controlador.
Description
Keywords
Control Predictivo, Estimación de Carbohidratos, In Silico, Uva Padova
Citation