Anillos de hermite. La recta proyectiva

No Thumbnail Available
Date
2021
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Los trabajos de Quillen y Suslin sobre la conjetura de la fila unimodular de Serre, abre el campo a losllamados por (Lam, 2010) anillos de Hermite. Por una parte se demuestra que los anillos locales, el producto directo decuerpos y las KK-álgebras finitas son anillos de Hermite. Un problema abierto sobre este tipo de anillos, es la Conjeturade Hermite: si R es un anillo de Hermite, entonces R[x] es un anillo de Hermite. Para el caso en que el anillo tenga dimensión de Krull menor o igual a un entero dado se prueba que la conjetura es verdadera. Por otra parte, la teoría estudiada sobre los espacios proyectivos tiene un enfoque algebraico, por ejemplo en (Doneddu,1980) se definen los espacios proyectivos asociados a un espacio vectorial de dimensión finita sobre un cuerpo K,este enfoque permite considerar la generalización de los espacios vectoriales a los R-módulos libres. Se pruebanresultados relacionados con puntos fuertemente independientes, referencias proyectivas y proyectividades algebraicashasta llegar a demostrar el Teorema de Staudt para rectas proyectivas. Se demuestra que existe una relación biunívocaentre el espacio proyectivo y el espacio proyectivo dual y concluimos demostrando que la forma bilineal asociada a esta relación biunívoca determina una estructura simpléctica sobre el .A-módulo 42.
Description
Keywords
Módulos libres, Anillos de Hermite, Fila unimodular, Recta proyectiva, Recta proyectiva dual.
Citation