Copias de c0(gamma) y l infinito(gamma) en espacios de funciones

No Thumbnail Available
Date
2021
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
El Teorema de Drewnowski, el cual fue probado por el matemático polaco Lech Drewnowski en 1991 establece condiciones necesarias y suficientes para que el espacio Kω˚ pX ˚;Yq de los operadores lineales ω ˚ ´ ω´continuos y compactos contenga una copia de `8. Esto es, Kω˚ pX ˚;Yq contiene una copia de `8 si, y solo si, X o Y contiene una copia de `8. Una consecuencia de este teorema es que el espacio KpX;Yq de los operadores compactos de X en Y contiene una copia de `8 si, y solo si, X ˚ o Y contiene una copia de `8. En este trabajo probaremos que el Teorema de Drewnowski puede ser extendido al espacio Pω˚ p nX ˚;Yq de los polinomios n´homogéneos ω ˚ ´ ω´continuos y compactos de X ˚ en Y. Esto es, Pω˚ p nX ˚;Yq contiene una copia de `8 si, y solo si, X o Y contiene una copia de `8. También mostraremos que el Teorema de Drewnowski para el caso de KpX;Yq no puede ser extendido al espacio PKp nX;Yq de los polinomios n´homogéneos compactos de X en Y considerando el caso en el que n “ 2 y X “ Y “ `2, esto es, PKp 2 `2; `2q. Finalmente, daremos condiciones para que el espacio Pω˚ p nX ˚;Yq contenga una copia de c0pΓq o `8pΓq.
Description
Keywords
Teorema de Drewnowski, Operador lineal ω ˚ ´ω´continuo y compacto, Copias de `8, Polinomio n´homogéneo, Copias de c0pΓq y `8pΓq.
Citation