El numero de rotacion de una curva cerrada
dc.contributor.advisor | Paredes Gutierrez, Marlio | |
dc.contributor.author | Perez Bernal, Reinaldo | |
dc.date.accessioned | 2024-03-03T04:38:49Z | |
dc.date.available | 2004 | |
dc.date.available | 2024-03-03T04:38:49Z | |
dc.date.created | 2004 | |
dc.date.issued | 2004 | |
dc.description.abstract | La presente monografía es un material de consulta para matemáticos que quiera saber algunos resultados interesantes, sobre las curvas en el plano teniendo en cuenta su aplicabilidad en algunos temas topológicos. Este trabajo consta de tres capítulos interesantes: Preliminares sobre curvas planas, el número de rotación de una curva cerrada, aplicaciones. En el primer capítulo se presentan las definiciones de curva, vector tangente, reparametrización, longitud de arco, campo de vectores, la curvatura de una curva y un resultado muy esencial es el teorema fundamental de las curvas planas, donde nos demuestra de cierta forma, que la función curvatura determina una curva. El segundo capítulo contiene las respectivas definiciones de ángulo orientado y del número de rotación de una curva cerrada con sus diferentes propiedades. Además en la sección de ángulos orientados se debe tener muy presente el tema de congruencias que es estudiado en el curso de teoría de números. Por último el tercer capítulo muestra algunas aplicaciones interesantes del concepto del número de rotación en las funciones continuas del disco en el plano y el teorema de Brower; los cuales abarcan un gran contenido topológico, que debe ser cuidadosamente estudiado para una mayor comprensión del tema. | |
dc.description.abstractenglish | This monograph is a consultation material for mathematicions that they want to know some interesting results about the curves in the plane and it taking account the applicability in some topology thems. This work consists of three interesting chapter: introduction about plane curves, the rotation number of a closed curve, applicability. In the first chapter appear the curve concepts, tangent vector, reparametrizacion, bow length, field of vectors, curvature of a curve and as a important part is the fundamental theorem of the plane curves. Where it show us that the curvature function define the curve. The second chapter has the concepts of angle oriented and the rotation number of a plane curve with its different properties. Furthermore in the section of the angles properties oriented, we must to have present the congruencies theme that it is studied in the curse of numbers theory. And in the third chapter shows some interesting applications of the rotation number concept in the continue functions of disc in the plane and in the Brower theorem; and this compasses a great topological content that it must are studied carefully for understand it so well. | |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Licenciado en Matemáticas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Industrial de Santander | |
dc.identifier.reponame | Universidad Industrial de Santander | |
dc.identifier.repourl | https://noesis.uis.edu.co | |
dc.identifier.uri | https://noesis.uis.edu.co/handle/20.500.14071/16473 | |
dc.language.iso | spa | |
dc.publisher | Universidad Industrial de Santander | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.program | Licenciatura en Matemáticas | |
dc.publisher.school | Escuela de Matemáticas | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.license | Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0 | |
dc.subject | Curvas en el plano Curvatura de una curva Geometría diferencial Número de rotación Topología. | |
dc.subject.keyword | Curves in the plane Curvature of a curve Differential geometry Rotation Number Topology | |
dc.title | El numero de rotacion de una curva cerrada | |
dc.title.english | The rotation number of a closed curve | |
dc.type.coar | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |
dc.type.hasversion | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |