Funciones que preservan metrica

dc.contributor.advisorCamargo García, Javier Enrique
dc.contributor.authorBayona Prieto, Gisselle Paola
dc.date.accessioned2024-03-03T13:07:16Z
dc.date.available2005
dc.date.available2024-03-03T13:07:16Z
dc.date.created2005
dc.date.issued2005
dc.description.abstractEn el ambiente matemático es bien conocido el tema de los espacios métricos ya sea en elcurrículum del curso de análisis matemático o en el curso de topología, por esta razón en elprimer capítulo se especifican conceptos como espacio métrico, función continua y funcióndiferenciable. En el segundo capítulo veremos que una función que preserva métrica se construye a partirde un espacio métrico (X, d) y una función f definida de [0, oo) en [0, oo) de modo que f o des una métrica. El primer interesado en estas funciones fue Sreenivasan en 1947, pero también en 1956Juza, mucho antes que el tema se formalizara, descubrio una interesante aplicación de lasfunciones que preservan métrica. En el capítulo tres es necesario tener en cuenta la continuidad de la función en cero. En laprimera sección examinaremos la importante relación entre funciones que preservan métrica fuertemente y la continuidad. En la segunda y última sección estudiaremos funcionescontinuas que preservan métrica las cuales son diferenciables en cero. Hallar la derivada encero es la tarea final del presente trabajo, obteniendo así una división de las funciones quepreservan métrica en dos clases diferentes: las que están determinadas por el valor finito ylas que tienen un valor infinito de su derivada en cero.
dc.description.abstractenglishMetric space, MONOTONa function, Continuous function, Derivative, Equivalent topologically spaces..
dc.description.degreelevelPregrado
dc.description.degreenameLicenciado en Matemáticas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Industrial de Santander
dc.identifier.reponameUniversidad Industrial de Santander
dc.identifier.repourlhttps://noesis.uis.edu.co
dc.identifier.urihttps://noesis.uis.edu.co/handle/20.500.14071/18059
dc.language.isospa
dc.publisherUniversidad Industrial de Santander
dc.publisher.facultyFacultad de Ciencias
dc.publisher.programLicenciatura en Matemáticas
dc.publisher.schoolEscuela de Matemáticas
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectEspacio métrico
dc.subjectFunción monótona
dc.subjectFunción continua
dc.subjectDerivada
dc.subjectEspacios topológicamente equivalentes..
dc.subject.keywordMetric space
dc.subject.keywordMONOTONa function
dc.subject.keywordContinuous function
dc.subject.keywordDerivative
dc.subject.keywordEquivalent topologically spaces..
dc.titleFunciones que preservan metrica
dc.title.englishFunction preserving metric
dc.type.coarhttp://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversionhttp://purl.org/coar/resource_type/c_7a1f
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Documento.pdf
Size:
455.09 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Nota de proyecto.pdf
Size:
61.59 KB
Format:
Adobe Portable Document Format