Efectos de campos magneticos fuertes sobre el estado 2p de un d en pozos, doble pozo y superredes cuanticas de gaas/(ga,al)as
No Thumbnail Available
Date
2004
Authors
Advisors
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Dentro del marco de la teoría de aproximación de masa efectiva y usando el método de dimensión fractal, se estudian las energías de los estados base (1s) y primer excitado _x000B__x0015_S_x000C_ de una impureza 0 ' descentrada en un pozo cuántico (QW), doble pozo cuantico (DQW) y una superred (SL) de D$V_x0010_D _x000C__x000B_ $O $V, en función de la intensidad del campo magnético, del ancho del pozo, del ancho de la barrera y la posición de la impureza, considerando diferentes formas de potencial de confinamiento: Rectangular, Suave y Parabólico. Se encuentra una ecuación de onda para la función envolvente, la cual describe la correlación entre la posición del electrón y la donadora en el estado _x0014_V y _x0015_S a partir del principio variacional de Schrödinger. Esta ecuación es equivalente a la ecuación de Schrödinger para un átomo hidrogenoide en un espacio efectivo con dimensión fractal variable. Considerando la densidad de carga alrededor de la donadora como un objeto fractal autosimilar, se analiza la dependencia de esta dimensión fractal ∗ ' con el ancho del pozo y la posición de la impureza, para el estado _x0014_V y _x0015_S. Se encuentra que la ∗ ' es isomórfica con el momentum angular O → O +1, correspondiente a un aumento de la ∗ ' : → + 2 ∗ ∗ ' ' . Además se muestra que la ∗ ' sufre una transformación similar, cuando la donadora es desplazada desde el centro del pozo a la barrera. Los cálculos de las energías de enlace del 0 ' se comparan con los resultados teóricos existentes en la literatura.
Description
Keywords
QW, DQW, SL, Principio variacional, Donadora neutra (' ), Jacobiano