Elementos regulares en los semigrupos L_F(V) Y MN(F)
dc.contributor.advisor | Pinedo Tapia, Héctor Edonis | |
dc.contributor.author | Camacho Parra, Juan Camilo | |
dc.contributor.evaluator | Goméz Rios, Jorge Eliecer | |
dc.contributor.evaluator | Uzcategui Alwyn, Carlos Enrique | |
dc.date.accessioned | 2024-05-21T20:52:50Z | |
dc.date.available | 2024-05-21T20:52:50Z | |
dc.date.created | 2024-05-18 | |
dc.date.issued | 2024-05-18 | |
dc.description.abstract | La teor ́ıa de semigrupos regulares es introducida por J.A. Green en 1951 en su art ́ıculo On the Structure of Semigroups 1 la cual consiste en la b ́usqueda de aquellos elementos que se comportan de forma similar a los elementos invertibles en un grupo, estos elementos se les conoce como elementos regulares, es decir, un elemento x ∈ S es un elemento regular si existe y ∈ S tal que xyx = x, decimos que S es un semigrupo regular si todo elemento en S es regular. Sea S un semigrupo regular y sea U un subsemigrupo de S. Una pregunta natural que surge es: ¿Es U un semigrupo regular? La respuesta en general es NO, as ́ı que la siguiente pregunta es: ¿Bajo qu ́e condiciones U es un semigrupo regular?. En 2007 S. Nenthein y Y. Kemprasit en 2 consideran el semigrupo de las transformaciones lineales T : V → V con la composici ́on de funciones y teniendo en cuenta que el subsemigrupo de un semigrupo regular no es necesariamente regular, consideran los subsemigrupos IF(V, W ) = {T ∈ LF(V ) | im T ⊆ W } y KF(V, W ) = {T ∈ LF(V ) | W ⊆ ker T }. Donde W es un subespacio vectorial de V . Se caracterizan sus elementos regulares y mas tarde en 3 se estudiaran algunos ideales del subsemigrupo Reg (IF(V, W )). Por otro lado, en 2 tambi ́en se exponen las caracterizaciones de los elementos regulares de los subsemigrupos Cn(F, k) = {A ∈ Mn(F) | aij = 0 ∀i, j ∈ {1, . . . , n} y j > k} Rn(F, k) = {A ∈ Mn(F) | aij = 0 ∀i, j ∈ {1, . . . , n} y i > k} del semigrupo Mn(F) junto con la multiplicaci ́on usual de matrices. En este trabajo de grado expondremos los resultados obtenidos en 2 para la caracterizaci ́on de los elementos regulares en IF(V, W ) = {T ∈ LF(V ) | im T ⊆ W } y KF(V, W ) = {T ∈ LF(V ) | W ⊆ ker T } y as ́ı extenderlo a los subsemigrupos Cn(F, k) y Rn(F, k) de Mn(F), posteriormente expondremos los resultados en 3 acerca de los ideales de Reg (IF(V, W )). | |
dc.description.abstractenglish | The theory of regular semigroups is introduced by J.A. Green in 1951 in his article On the Structure of Semigroups 1 which consists in the search for those elements that behave similarly to invertible elements in a group, these elements are known as regular elements, that is, an element x ∈ S is a regular element if there exists y ∈ S such that xyx = x, we say that S is a regular semigroup if every element in S is regular. Let S be a regular semigroup and let U be a subsemigroup of S. A natural question that arises is: Is U a regular semigroup? The answer in general is NO, so the next question is: Under what conditions is U a regular semigroup? In 2007 S. Nenthein and Y. Kemprasit in 2 consider the semigroup of linear transformations T : V → V with the composition of functions and taking into account that the subsemigroup of a regular semigroup is not necessarily regular, they consider the subsemigroups IF(V, W ) = {T ∈ LF(V ) | im T ⊆ W } y KF(V, W ) = {T ∈ LF(V ) | W ⊆ ker T }. Where W is a vector subspace of V . Its regular elements are characterized and later in 3 some ideals of the subsemigroup Reg (IF(V, W )) will be studied. On the other hand, in 2 the characterizations of the regular elements of the subsemigroups are also exposed. Cn(F, k) = {A ∈ Mn(F) | aij = 0 ∀i, j ∈ {1, . . . , n} y j > k} , Rn(F, k) = {A ∈ Mn(F) | aij = 0 ∀i, j ∈ {1, . . . , n} y i > k} . of the semigroup Mn(F) together with the usual matrix multiplication. In this thesis we will expose the results obtained in 2 for the characterization of the regular elements in IF(V, W ) = T ∈ LF(V ) | im T {KF(V, W ) = T ∈ LF(V ) | W ⊆ W ker T } and thus extend it to the subsemigroups Cn(F, k) and Rn(F, k) of Mn(F), subsequently we will state the results in 3 about the ideals of Reg (IF(V, W )). | |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Matemático | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Industrial de Santander | |
dc.identifier.reponame | Universidad Industrial de Santander | |
dc.identifier.repourl | https://noesis.uis.edu.co | |
dc.identifier.uri | https://noesis.uis.edu.co/handle/20.500.14071/42515 | |
dc.language.iso | spa | |
dc.publisher | Universidad Industrial de Santander | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.program | Matemáticas | |
dc.publisher.school | Escuela de Matemáticas | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.license | Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | SEMIGRUPOS REGULARES | |
dc.subject | TRANSFORMACIONES LINEALES | |
dc.subject | MATRICES | |
dc.subject | RELACIONES DE GREEN | |
dc.subject.keyword | REGULAR SEMIGROUPS | |
dc.subject.keyword | LINEAR TRANSFORMATIONS | |
dc.subject.keyword | MATRICES | |
dc.subject.keyword | GREEN RELATIONS | |
dc.title | Elementos regulares en los semigrupos L_F(V) Y MN(F) | |
dc.title.english | Regular elements of semigroups L_F(V) Y MN(F) | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.hasversion | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Files
Original bundle
1 - 3 of 3
No Thumbnail Available
- Name:
- Documento.pdf
- Size:
- 392.23 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Carta de autorización.pdf
- Size:
- 113.77 KB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Nota de proyecto.pdf
- Size:
- 748.55 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2.18 KB
- Format:
- Item-specific license agreed to upon submission
- Description: