Maestría en Matemática Aplicada
Permanent URI for this collection
Browse
Browsing Maestría en Matemática Aplicada by browse.metadata.advisor "Lora Clavijo, Fabio Duván"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Análisis del efecto del término de Hall en hojas de corriente asociadas con erupciones solares(Universidad Industrial de Santander, 2023-08-14) Jaimes González, Lizeth Daniela; Lora Clavijo, Fabio Duván; Navarro Noguera, Anamaría; Chaparro Molano, GermanLas erupciones solares son manifestaciones altamente relevantes en la corona solar, ya que estos eventos representan los procesos de liberación de energía más violentos que ocurren en el sistema solar. Actualmente, la reconexión magnética es ampliamente aceptada en la comunidad científica como el mecanismo clave para la liberación de energía, tanto en erupciones solares como en diversos plasmas astrofísicos. A pesar de este consenso, todavía no se conocen completamente los detalles y mecanismos precisos de esta transferencia y conversión de energía. Por esta razón, se han desarrollado varios modelos teóricos que han permitido realizar simulaciones numéricas y contribuir así a la comprensión de la física asociada a estos mecanismos, incluyendo modelos como la magnetohidrodinámica Hall. Con el propósito de realizar un estudio sistemático sobre la influencia del término de Hall en las hojas de corriente asociadas a las erupciones solares, se lleva a cabo una comparación de la morfología, tasas de reconexión, flujo reconectado y energía transferida para los casos con y sin la inclusión del término de Hall en el sistema. Para ello, se realizan simulaciones numéricas de la reconexión magnética en una erupción solar, empleando una hoja de corriente de Harris con una resistividad localizada, en un entorno 2.5D. Además, con el objetivo de establecer un escenario considerablemente realista, se considera la influencia de la gravedad en el sistema. Estas simulaciones se llevan a cabo utilizando el código MAGNUS \citep{pro2}, el cual resuelve las ecuaciones de la magnetohidrodinámica resistiva y con flujo de calor. Por lo tanto, se incluyen los nuevos flujos de Hall en el código, así como el paso de tiempo adaptativo que tiene en cuenta los nuevos modos de onda generados por éste término. En términos generales, se observa que la presencia del efecto Hall en el proceso de reconexión magnética en las erupciones solares produce cambios en la morfología de la hoja de corriente, generando asimetría y regiones de difusión más pequeñas. Además, se ha encontrado que el efecto Hall aumenta la tasa de reconexión, lo cual concuerda con los valores reportados en observaciones y otras simulaciones numéricas. Por último, se ha observado que la presencia del efecto Hall tiene un impacto significativo en los flujos de energía entrantes, resultando en velocidades de hasta 400 km/s y liberaciones de energía del orden de $10^{26}$ erg en los flujos ascendentes. Estos valores son consistentes con los informados para las microerupciones.Item Construcción de un código MHD con dos fluidos para el estudio de la dinámica del plasma en la atmósfera solar(Universidad Industrial de Santander, 2022-03-30) Wandurraga Sanabria, Paula Camila; Lora Clavijo, Fabio Duván; Pimentel Díaz, Óscar Mauricio; Ballester Mortes, José LuisLos fluidos parcialmente ionizados abundan en el universo en estructuras como las nubes moleculares, ionósferas planetarias y discos protoplanetarios, además de algunas capas terrestres como la ionósfera y la termósfera, y particularmente en el caso de la atmósfera solar, en la región de la cromósfera. En esta zona del Sol, ocurren diferentes fenómenos como las espículas, las oscilaciones periódicas de 3 minutos, los \textit{loops} fríos, las prominencias, entre otros, haciendo que su estudio sea de gran interés. En este trabajo de investigación, se construye un código que resuelve las ecuaciones de la Hidrodinámica y de la Magnetohidrodinámica, con el fin de modelar un plasma parcialmente ionizado, constituido por una especie neutral y una especie cargada (iones + electrones), que se acoplan por medio de colisiones y generan calor debido a su interacción. Para garantizar la correcta implementación de las ecuaciones y de los métodos numéricos, se realizan diferentes pruebas numéricas: la primera se lleva a cabo en el régimen lineal y consiste en la propagación de ondas acústicas en un medio uniforme, para la cual existe una solución exacta bajo determinadas condiciones. El resultado numérico obtenido con el código, reproduce de manera exacta y precisa la solución analítica, para un valor dado del parámetro de colisiones. Posteriormente se realiza una prueba no lineal unidimensional, el tubo de choque, cuya solución exacta es conocida tanto para un fluido Hidrodinámico (tubo de Sod), como para uno Magnetohidrodinámico (tubo de Brio-Wu), es decir, para un plasma parcialmente ionizado desacoplado. La solución arrojada por el código para un plasma desacoplado, es consistente con la analítica, y para el caso de un plasma acoplado, se observa que las colisiones modifican la estructura de cada fluido, para que converja a una misma solución. Por otra parte, la última prueba no lineal se desarrolla en dos dimensiones, el vórtice de Orszag-Tang, cuyos resultados para el plasma desacoplado, simulan favorablemente la morfología típica de la prueba. El caso acoplado demuestra la influencia indirecta del campo magnético sobre las partículas neutrales, y de estas últimas sobre la dinámica del fluido ionizado. Adicionalmente, como aplicación del código en física solar, se realiza un modelo de la inestabilidad de Kelvin-Helmholtz en la interfaz entre la corona solar y una prominencia, cuyo material está parcialmente ionizado. Los resultados muestran que un acople más fuerte entre los fluidos, conlleva a una mayor amplificación de los campos magnéticos, siendo ésta una de las posibles causas del calentamiento coronal y de la aceleración de las partículas del viento solar. Se concluye que, tanto en las pruebas numéricas, como en la aplicación física, las colisiones entre las partículas cargadas y las neutrales, acoplan el sistema, de tal manera que su evolución converge hacia una solución tipo atractora, donde ambas especies tienden a un mismo comportamiento. Esto se presenta debido a que los campos magnéticos actúan indirectamente sobre las partículas neutrales mediante las colisiones, y estas transfieren parte de su energía cinética al fluido cargado, disminuyendo el efecto tipo tensión superficial que presenta el campo magnético, lo que implica que la especie neutral suavice su morfología y que la especie cargada se inestabilice.Item Dinámica del Plasma en la Atmósfera Solar con Términos Radiativos(Universidad Industrial de Santander, 2022-09-04) Bautista Torres, Carlos Andrés; Lora Clavijo, Fabio Duván; Becerra Vergara, Eduar Antonio; Navarro Noguera, AnamaríaLa generación de radiación es un fenómeno que se da en todas las capas del Sol, desde el núcleo mediante fusión nuclear, hasta la corona solar con su espectro de emisión. Dicha radiación juega un papel importante en el estudio de la atmósfera solar y las diferentes estructuras que se forman en esta región, tales como fulguraciones, arcadas coronales y el calentamiento coronal. Esto se debe a que la interacción materia-radiación abunda, especialmente en la fotosfera, donde el plasma está en equilibrio térmico local y la pérdida de calor por radiación no es despreciable. Para determinar la influencia de la radiación en la atmósfera solar, en este trabajo se realizó un análisis de la propagación de ondas magnetohidrodinámicas no lineales, considerando términos radiativos. Particularmente, se estudió la propagación de ondas de gravedad y la oscilación de ondas de Alfvén; el primer fenómeno enfocado en la atmósfera inferior y el segundo en arcadas coronales. Para modelar dichos fenómenos, se utilizó un código que resuelve las ecuaciones de la magnetohidrodinámica, el código MAGNUS, al cual se le incorporó un módulo para resolver la ecuación de transferencia de radiación considerando las teorías de opacidad bound-free y scattering. Con el fin de verificar el correcto funcionamiento del nuevo módulo, se realizaron pruebas numéricas en el régimen isotérmico, y considerando un perfil analítico de la temperatura. Finalmente, se determinó la influencia de los términos radiativos en la atmósfera solar, obteniendo pérdidas de energía de hasta 28.7% en la propagación de ondas de gravedad, dando evidencia de la gran importancia de considerar pérdidas de calor por radiación en simulaciones de la atmósfera baja.Item Influencia de la polarización magnética en la dinámica del plasma en el jet de la radiogalaxia M87(Universidad Industrial de Santander, 2023-01-31) Arrieta Villamizar, Jesús Andrés; Lora Clavijo, Fabio Duván; Pimentel Díaz, Óscar Mauricio; Martí Puig, Jose María; Mendoza Ramos, SergioLos jets relativistas presentes en diferentes escenarios astrofísicos como quásares, blazares o radiogalaxias forman parte de los fenómenos más energéticos del universo. Las zonas observadas en estos flujos, con aparentes partículas superlumínicas, se interpretan como ondas de choque en propagación. Un mecanismo que puede producir estas ondas proviene de los campos magnéticos que rodean el jet. Sin embargo, aún no se han realizado sufientes estudios sobre la interacción de la magnetización con el material del jet. Por lo tanto, es relevante considerar los campos magnéticos inducidos por la polarización de la materia en regiones dominadas magnéticamente. En este trabajo, se resuelven numéricamente las ecuaciones de la magnetohidrodinámica ideal en relatividad especial, con términos de polarización magnética, y con pérdidas radiativas del gas que interactúa con un medio externo. Particularmente, se analiza la influencia de la polarización magnética en la estructura de choques del sistema, donde se encontró que las primeras ondas que aparecen en las soluciones numéricas son más rápidas en los materiales diamagnéticos que en los paramagnéticos. Además, la expansión del gas ocurre abruptamente en las etapas iniciales de eyección debido a las velocidades relativistas con las que se propaga. Finalmente, al considerar pérdidas radiativas, la potencia emitida es mayor en un plasma paramagnético en relación al diamagnético o el no polarizado, donde se concluye que los materiales paramagnéticos, al viajar más lento, son menos eficientes porque irradian más energía y se enfrían más rápido.Item Simulación del mapa de intensidades en discos de acreción magnéticamente polarizados alrededor de agujeros negros de Kerr(Universidad Industrial de Santander, 2022-11-13) Velásquez Cadavid, Juan Manuel; Lora Clavijo, Fabio Duván; Pimentel Díaz, Óscar Mauricio; González Villegas, Guillermo Alfonso; Cruz Osorio, AlejandroLos campos magnéticos presentes en los discos de acreción alrededor de agujeros negros están asociados con procesos de acreción y amplificación de energía. El aporte del campo magnético debido a la polarización magnética del material induce efectos sobre las propiedades físicas del medio que repercuten en la radiación proveniente de los discos de acreción. Por ende, a partir de las observaciones sería posible determinar el impacto generado por la polarización magnética en el perfil de emisión y establecer posteriormente las propiedades del agujero negro. Como primer paso se reprodujo la ecuación de la transferencia radiativa, a partir de la cual se calculó la intensidad específica para cada fotón emitido desde el disco. Posteriormente, se realizaron simulaciones para llevar a cabo un análisis sistemático de los posibles efectos observables producidos por las propiedades magnéticas de un toro alrededor de un agujero negro de Kerr. Se encontró que al considerar radiación sincrotrón no térmica, los efectos de la polarización magnética son insignificantes cuando el plasma está dominado por la presión del gas. Sin embargo, cuando los discos están dominados por la presión magnética, a medida que disminuye la magnetización la emisión se intensifica. En particular, se encontró una tendencia en la cual los discos paramagnéticos más intensamente en relación al caso de Kommisarov, y que estos a su vez emiten mayor intensidad que los discos diamagnéticos. Además, se encontró que la compacidad del disco cambia con la susceptibilidad magnética, siendo los discos paramagnéticos más compactos que los discos de Komissarov, y estos últimos más compactos que los diamagnéticos. Esto conlleva a que los discos diamagnéticos emitan un mayor flujo dado que cada fotón tiene mayor camino óptico para viajar dentro del disco. Asimismo, al aumentar la magnetización también aumenta el flujo emitido, puesto que se desprecian los efectos de la susceptibilidad magnética.