Maestría en Gerencia de Mantenimiento
Permanent URI for this collection
Browse
Browsing Maestría en Gerencia de Mantenimiento by Subject "Artificial Intelligence"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Estimación de la vida útil remanente de los transformadores de potencia de la Central Hidroeléctrica Urra I utilizando técnica de inteligencia artificial(Universidad Industrial de Santander, 2023-03-09) Sierra Flórez, Mario José; Borrás Pinilla, Carlos; Quiroga Méndez, Jabid Eduardo; González Estrada, Octavio AndrésLos transformadores de potencia de la Central Hidroeléctrica Urra I son activos de gran importancia para la generación de la energía eléctrica, los cuales elevan la tensión de salida de los generadores de 13,8 kV a 230 kV para, posteriormente, llevar la energía a través de cables hasta la subestación donde se integra al sistema interconectado nacional. Es por esto que un buen mantenimiento y operación de estos transformadores es vital para la continuidad en el suministro de energía eléctrica. Para realizar seguimiento al estado de los transformadores de potencia se han instalado equipos para monitoreo en línea de gases disueltos en el aceite (DGA) y controladores electrónicos de la temperatura del transformador. Este proyecto tiene como base la búsqueda de una metodología para estimar la vida útil remanente de un transformador de potencia inmerso en aceite utilizando los registros de los equipos de medida mencionados anteriormente, y aplicando una técnica de inteligencia artificial. Inicialmente se realizó un estudio de las diferentes técnicas basadas en inteligencia artificial con el fin de seleccionar la más adecuada de acuerdo con las características de la data existente. Seguido se plantean metodologías para estimar la vida remanente de un transformador utilizando análisis de regresión y aplicando la herramienta computacional Matlab. Por último, se realiza un análisis de resultados de aplicar el modelo obtenido, donde se pudo encontrar que es posible estimar la vida útil remanente de un transformador con una buena aproximación utilizando un análisis de regresión con la app regression learner de Matlab.