Sobre anillos fuertemente unitarios y casi fuertemente unitarios

No Thumbnail Available
Date
2024-05-21
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
El anillo Z_6 de los enteros módulo 6, cumple la propiedad de que posee identidad multiplicativa y además todos sus subanillos propios también posee uno. Se le ha dado el nombre de anillos fuertemente unitarios a todos los anillos que cumplen la misma propiedad que Z_6, esto es anillos que son unitarios y además todos sus subanillos propios también poseen uno (aunque no siempre coincida con el uno del anillo). De la misma manera también se denota por anillos casi fuertemente unitarios a los anillos R que no poseen identidad multiplicativa pero todos sus subanillos propios sí poseen uno. En este trabajo presentaremos una caracterización sencilla de los anillos fuertemente unitarios y de los anillos casi fuertemente unitarios y analizaremos su naturaleza relacionándolos con cuerpos absolutamente algebraicos de característica prima. El documento se encuentra estructurado de la siguiente manera: en el primer capítulo, llamado Preliminares, se presentan algunas nociones sobre ideales, cuerpos y anillos artinianos que serán necesarias manejar por parte del lector para una buena comprensión de las siguientes secciones. En el capítulo posterior se presenta la definición de anillos fuertemente unitarios y se proporciona una caracterización de los mismos, relacionándolos con cuerpos de característica prima. Por último se exponen las principales características de la naturaleza de los anillos casi fuertemente unitarios, a la vez que se proporciona algunos teoremas que permiten diferenciarlos, en un tercer capítulo llamado Anillos casi fuertemente unitarios. Finalmente se encuentran los documentos y fuentes bibliográficas que se utilizaron en la realización de este trabajo en el apartado llamado Bibliografía.
Description
Keywords
ANILLO UNITARIO, CUERPOS, CARACTERÍSTICA DE UN CUERPO, ANILLOS ARTINIANOS, ANILLOS REDUCIDOS, CUERPO ABSOLUTAMENTE ALGEBRAICO
Citation
Collections