Teorema de pascal
No Thumbnail Available
Date
2024-11-05
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
El teorema de Pascal establece que, para todo hexágono inscrito en una cónica, en el plano proyectivo, los lados opuestos del hexágono se cortan en tres puntos colineales. En este trabajo, realizamos un estudio de los conceptos y herramientas necesarias para dar la prueba al Teorema de Pascal, en geometría euclidiana y geometría proyectiva, y damos paso al análisis de problemas y construcciones en le geometría euclidiana, donde el uso del Teorema de Pascal permite resolver estos problemas y visualizar resultados.
En el primer capítulo, repasaremos algunas definiciones y resultados de la geometría proyectiva, como lo pueden ser los espacios proyectivos y el uso de las coordenadas homogéneas, los cuales serán importantes para la prueba del Teorema de Pascal en geometría proyectiva. En el siguiente capítulo, introducimos el concepto de cónicas y exponemos los enunciados y demostraciones del Teorema de Pascal en geometría euclidiana y proyectiva, para poder dar una comparación de este teorema en ambas situaciones. Por ultimo, expondremos situaciones donde el uso del Teorema de Pascal nos permita obtener resultados, como lo puede ser en problemas de Olimpiadas Internacionales de Matemáticas o construcciones creadas en geometría euclidiana, para así dar a entender la utilidad del Teorema de Pascal en la geometría.
Description
Keywords
ESPACIOS PROYECTIVOS, RAZON DOBLE, CONICAS, PERSPECTIVAS