Anillos de grupos torcidos artinianos

No Thumbnail Available
Date
2017
Authors
Perez Carrillo, Jerson Enrique
Advisors
Pinedo Tapia, Héctor Edonis
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Sean R un anillo con unidad, G un grupo y θ un homomorfismo de grupos de G a Aut(R), donde el conjunto Aut(R) es el grupo de automorfismos de R. Con estos objetos definiremos su anillo de grupo torcido asociado R ∗θ G y demostraremos el Teorema de J. K. Park, el cual dice que el anillo R ∗θ G es artiniano si y solo si R es artiniano y G es finito. Para su demostraci´on ser´a muy importante el Teorema de Connell, ya que la demostraci´on se basar´a en aplicarlo repetidas veces. En el primer cap´ıtulo veremos el Lema de Zorn y mostraremos el porque nos resulta ´util, luego introduciremos el concepto de m´odulo y estudiaremos sus propiedades b´asicas ya que este concepto es la base de los dem´as cap´ıtulos. En el segundo cap´ıtulo nos centraremos en algunas propiedades estructurales de los anillos y los m´odulos, como lo son la simplicidad y semisimplicidad en m´odulos, estas propiedades nos permitir´an una facilidad al momento de estudiar los m´odulos, tambi´en los anillos primitivos y semiprimitivos, y por ´ultimo la propiedad que m´as nos interesa la cual es la condici´on de cadena descendente o condici´on de Artin. En el tercer cap´ıtulo damos paso a la construcci´on de los anillos de grupos torcidos, luego nos centraremos en probar propiedades de estos objetos relacionadas a la propiedad de ser artiniano, principalmente dos versiones del Teorema de J. K. Park con m´as hip´otesis y usandolos concluiremos con la demostraci´on del Teorema de J. K. Park.
Description
Keywords
Modulos; Radical De Jacobson; M ´ Odulos Ar- ´ Tinianos; Anillos Artinianos; Anillos De Grupos Torcidos
Citation
Collections