Metodología de adquisición y reconstrucción de vídeos espectrales mediante el uso de la teoría de muestreo compresivo y redes neuronales convolucionales

Thumbnail Image
Date
2022-03-31
Authors
Calderón Carrillo, Camilo Andrés
Gómez Toloza, Pablo Andrés
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
La adquisición de video espectral a partir de la teoría de muestreo compresivo (CSV, de sus siglas en inglés compressive spectral video) se ha convertido en un tema de investigación de gran interés en la comunidad de visión por computadora, debido a que estos sistemas permiten comprimir la información espacial, espectral y temporal en un conjunto de imágenes 2D para posteriormente recuperarla usando algoritmos de reconstrucción. Sin embargo, los enfoques de CSV se han limitado a comprimir únicamente la dimensión espectral de cada cuadro, es decir, no se desarrolla compresión temporal. Los enfoques alternativos son los sistemas de brazo doble basados en un generador de imágenes espectrales y temporales compresivas que fusiona las mediciones adyacentes para recuperar el vídeo espectral. Por lo tanto, es deseable el desarrollo de un generador de imágenes CSV que permita recuperar un vídeo espectral a partir de una única medición comprimida. Este trabajo propone una metodología de adquisición y compresión de video espectral mediante el uso de un elemento de codificación espacial binario tipo segmentado y un filtro tuneable. A través del sistema óptico propuesto, tanto la dimensión espectral como la temporal se pueden modular durante un tiempo de integración utilizando solo dos elementos ópticos.
Description
Keywords
Muestreo compresivo, Video espectral, Aprendizaje profundo, Sistema óptico
Citation