Adéles sobre el cuerpo de los números p-ádicos
Cargando...
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Industrial de Santander
Resumen
El el presente trabajo se mostrará la construcción del anillo de los adéles finitos, la cual se basa en la construcción del cuerpo de los números p-ádicos Q_{p}. El anillo finito de adéles A_{f} se define como el producto directo del cuerpo Q_{p} (Katok, 2007) sobre todos los números primos (finitos) con respecto al anillo de enteros p-ádicos Z_{p}. La construcción de este anillo se fundamenta en pegar todas las completaciones p-ádicas de los números racionales. Es decir:
Sea Z_{p} el anillo de los enteros p-ádicos y Q_{p} el cuerpo de los números p-ádicos. Un adéle finito de Q, denotado por A_{Q, fin}=A_{fin} es el producto directo restringido de Q_{p} con respecto a Z_{p} (Aguilar-Arteaga et al., 2020). Esto es:
A_{Q ,fin}=A_{f}={(a_{p})_{p en P} en \prod_{p en P} Q_{p}: a_{p} en Z_{p}, para casi todos los primos p en P},
donde P denota el conjunto de los números primos.