Evidencias del tránsito entre los modos de pensamiento geométrico, aritmético y estructural en estudiantes de secundaria y primer año de universidad : el caso de los sistemas de ecuaciones lineales con dos incógnitas

No Thumbnail Available
Date
2010
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
El presente trabajo pretende responder a la pregunta ¿Qué dificultades se presentan en estudiantes del grado noveno y los estudiantes de Algebra Lineal II, al transitar entre los modos de pensamiento sintético-geométrico, analítico-aritmético y analítico-estructural al resolver sistemas de dos ecuaciones lineales con dos incógnitas e interpretar su solución? Por tanto el interés se encuentra centrado en determinar evidencias del tránsito entre los modos de pensamiento. Para el desarrollo del trabajo se interactuó con un grupo de estudiantes de noveno grado de básica secundaria y segundo semestre de programas presenciales de pregrado. Se aplicó una prueba diagnóstica a partir de la cual, se diseñaron actividades para realizar una entrevista didáctica con seis de los estudiantes antes mencionados, tres de cada grupo. La lectura y análisis de las respuestas de los estudiantes, bajo la óptica de los modos de pensamiento en Álgebra lineal, expuestos por Sierpinska (2000): pensamiento sintético-geométrico, analítico-aritmético y analíticoestructural, permitieron detectar fortalezas y debilidades que se presentan, cuando los estudiantes se enfrentan a la solución de sistemas de ecuaciones lineales con dos incógnitas. La búsqueda de evidencias del tránsito entre los diversos procesos típicos de cada modo de pensamiento, que deben darse durante la solución de los sistemas de ecuaciones, aportó el espacio para explicar las falencias encontradas. Finalmente se plantean algunas observaciones de tipo metodológico, con el propósito de mejorar el proceso de acompañamiento que deben orientar los maestros, para la construcción pertinente de conocimiento matemático en los estudiantes.
Description
Keywords
Pensamiento, Geométrico, Aritmético, Estructural, Tránsito.
Citation