Escuela de Matemáticas
Permanent URI for this community
Browse
Browsing Escuela de Matemáticas by browse.metadata.advisor "Granados Pinzón, Claudia Inés"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Anillos de Hermite. La recta proyectiva(Universidad Industrial de Santander, 2021) Contreras Mendoza, Astrid Liliana; Granados Pinzón, Claudia Inés; Pinedo Tapia, Héctor Edonis; García Martínez, Sandra CarolinaLos trabajos de Quillen y Suslin sobre la conjetura de la fila unimodular de Serre, abre el campo a los llamados por (Lam, 2010) anillos de Hermite. Por una parte se demuestra que los anillos locales, el producto directo de cuerpos y las K-álgebras finitas son anillos de Hermite. Un problema abierto sobre este tipo de anillos, es la Conjetura de Hermite: si R es un anillo de Hermite, entonces R[x] es un anillo de Hermite. Para el caso en que el anillo tenga dimensión de Krull menor o igual a un entero dado se prueba que la conjetura es verdadera. Por otra parte, la teoría estudiada sobre los espacios proyectivos tiene un enfoque algebraico, por ejemplo en (Doneddu, 1980) se definen los espacios proyectivos asociados a un espacio vectorial de dimensión finita sobre un cuerpo K, este enfoque permite considerar la generalización de los espacios vectoriales a los R-módulos libres. Se prueban resultados relacionados con puntos fuertemente independientes, referencias proyectivas y proyectividades algebraicas hasta llegar a demostrar el Teorema de Staudt para rectas proyectivas. Se demuestra que existe una relación biunívoca entre el espacio proyectivo y el espacio proyectivo dual y concluimos demostrando que la forma bilineal asociada a esta relación biunívoca determina una estructura simpléctica sobre el A-módulo A2.Item Anillos de hermite. La recta proyectiva(Universidad Industrial de Santander, 2021) Contreras Mendoza, Astrid Liliana; Granados Pinzón, Claudia InésLos trabajos de Quillen y Suslin sobre la conjetura de la fila unimodular de Serre, abre el campo a losllamados por (Lam, 2010) anillos de Hermite. Por una parte se demuestra que los anillos locales, el producto directo decuerpos y las KK-álgebras finitas son anillos de Hermite. Un problema abierto sobre este tipo de anillos, es la Conjeturade Hermite: si R es un anillo de Hermite, entonces R[x] es un anillo de Hermite. Para el caso en que el anillo tenga dimensión de Krull menor o igual a un entero dado se prueba que la conjetura es verdadera. Por otra parte, la teoría estudiada sobre los espacios proyectivos tiene un enfoque algebraico, por ejemplo en (Doneddu,1980) se definen los espacios proyectivos asociados a un espacio vectorial de dimensión finita sobre un cuerpo K,este enfoque permite considerar la generalización de los espacios vectoriales a los R-módulos libres. Se pruebanresultados relacionados con puntos fuertemente independientes, referencias proyectivas y proyectividades algebraicashasta llegar a demostrar el Teorema de Staudt para rectas proyectivas. Se demuestra que existe una relación biunívocaentre el espacio proyectivo y el espacio proyectivo dual y concluimos demostrando que la forma bilineal asociada a esta relación biunívoca determina una estructura simpléctica sobre el .A-módulo 42.Item Anillos totales de cocientes y su recta proyectiva(Universidad Industrial de Santander, 2021) Guevara Gómez, Jackson; Granados Pinzón, Claudia Inés; Teherán Herrera, Arnoldo Rafael; Bueno Carreño, Diana HaidiveEn este trabajo de investigaci_x0013_on se estudia el problema abierto de la geometr_x0013__x0010_a proyectiva, que consiste en caracterizar la recta proyectiva sobre anillos, en todo el documento, se entender_x0013_a por anillo, como un anillo conmutativo con uno. Particular- mente, este trabajo se centra en la recta proyectiva sobre anillos totales de cocientes. Primero, se consideran los anillos de cocientes y el homomor_x000C_smo can_x0013_onico. Se intro- ducen los anillos totales de cocientes como un caso particular de los anillos de cocientes y se establecen relaciones existentes con otros anillos como los dominios eucl_x0013__x0010_deos, las K-_x0013_algebras _x000C_nitas y el producto directo de anillos totales de cocientes. Finalmente se muestra la inmersi_x0013_on de cualquier anillo en un producto de cuerpos. As_x0013__x0010_ mismo, se inicia el estudio de la recta proyectiva sobre anillos totales de co- cientes, de_x000C_niendo los elementos complementables en un m_x0013_odulo libre bidimensional. Tambi_x0013_en se mencionan conceptos como fuertemente independientes y referencia proyec- tiva; posteriormente se de_x000C_nen las proyectividades algebraicas _x001C_ - semilineales; la raz_x0013_on doble (o raz_x0013_on anarm_x0013_onica) y como un caso particular, la cuaterna arm_x0013_onica. Finalmen- te se consideran las proyectividades de Staudt que mantienen invariantes las cuaternas arm_x0013_onicas y se demuestra El Teorema de Staudt.