Maestría en Matemáticas
Permanent URI for this collection
Browse
Browsing Maestría en Matemáticas by Author "Contreras Páez, Duván Alexis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Análisis teórico de las ecuaciones diferenciales difusas de orden fraccionario(Universidad Industrial de Santander, 2021) Contreras Páez, Duván Alexis; Villamizar Roa, Elder Jesús; Arenas Díaz, Gilberto; Pérez López, Jhean Eleison; Herrón Osorio, Sigifredo de JesúsEl estudio de ecuaciones diferenciales fraccionarias constituye un campo de creciente interés, no solo desde el punto de vista teórico, sino también debido a su aplicabilidad al análisis de fenómenos de las ciencias físicas y naturales. Su formalización se caracteriza por la sustitución de derivadas clásicas por derivadas de orden fraccionario. Por otro lado, las ecuaciones diferenciales difusas se propusieron como un intento de manejar la incertidumbre que aparece en muchos modelos matemáticos de algunos fenómenos no deterministas del mundo real en los que predomina la incertidumbre, la subjetividad o la vaguedad. En esta tesis, además de disertar sobre la fundamentación teórica del cálculo fraccionario, se analiza la existencia de soluciones de problemas de valor inicial en el contexto fraccionario, que incluyen fenómenos de retardo. Explícitamente, considerando la derivada generalizada difusa de Caputo-Katugampola, se demuestran algunos resultados de existencia y unicidad vía teoremas de punto fijo de funciones débilmente contractivas sobre espacios métricos parcialmente ordenados.Item Análisis teórico de las ecuaciones diferenciales difusas de orden fraccionario(Universidad Industrial de Santander, 2021) Contreras Páez, Duván Alexis; Arenas Díaz, Gilberto; Villamizar Roa, Elder JesúsEl estudio de ecuaciones diferenciales fraccionarias constituye un campo de creciente interés, nosolo desde el punto de vista teórico, sino también debido a su aplicabilidad al análisis de fenómenosde las ciencias físicas y naturales. Su formalización se caracteriza por la sustitución de derivadasclásicas por derivadas de orden fraccionario. Por otro lado, las ecuaciones diferenciales difusas sepropusieron como un intento de manejar la incertidumbre que aparece en muchos modelos matemáticos de algunos fenómenos no deterministas del mundo real en los que predomina la incertidumbre,la subjetividad o la vaguedad. En esta tesis, además de disertar sobre la fundamentación teórica delcálculo fraccionario, se analiza la existencia de soluciones de problemas de valor inicial en el contextofraccionario, que incluyen fenómenos de retardo. Explícitamente, considerando la derivada generalizada difusa de Caputo-Katugampola, se demuestran algunos resultados de existencia y unicidad víateoremas de punto fijo de funciones débilmente contractivas sobre espacios métricos parcialmente ordenados.