Maestría en Matemáticas
Permanent URI for this collection
Browse
Browsing Maestría en Matemáticas by Title
Now showing 1 - 20 of 66
Results Per Page
Sort Options
Item Acciones de grupos profinitos sobre espacios profinitos(Universidad Industrial de Santander, 2022-04-01) Villamizar Tarazona, Andrés Yamith; Pinedo Tapia, Héctor Edonis; Camargo García, Javier Enrique; Hernández Arzusa, Julio CésarSean I un conjunto dirigido y C una categoría. En el marco de la teoría de categorías, una clásica construcción es el llamado límite inverso asociado a un sistema inverso indizado por I; en particular, un espacio profinito X se define como el límite inverso de un sistema inverso conformado por espacios topológicos finitos y discretos, o de manera equivalente como se expresa en (Magid, 2014, p. 50), X es un espacio compacto, Hausdorff y totalmente disconexo. Adicionalmente, un grupo topológico G es un grupo profinito si visto como espacio topológico es profinito. Uno de los objetivos de este trabajo es analizar la estrecha relación que existe entre los grupos profinitos y la Teoría de Galois. Por otro lado, el concepto de acción parcial de grupo nace en el contexto de las C^*-álgebras, en medio de los trabajos realizados por el matemático brasileño Ruy Exel, sin embargo, la idea de acción parcial de un grupo sobre un conjunto fue introducida en (Exel, 1998), y generaliza la noción de acción de grupo. Sea G un grupo y \varphi una acción de G sobre un espacio topológico X. La relación de órbita asociada a \varphi, junto con el espacio de órbitas (usualmente denotado por X/G) y la proyección \ps_G:G : X\rightarrow X/G, son conceptos destacados en el estudio de las acciones de grupo. Este trabajo se enfoca por un lado en estudiar condiciones establecidas en (Magid, 2014, Section 2.4), bajo las cuales X/G es profinito, y para que la proyección G admita secciones continuas; por otro lado, el interés es presentar formalmente las acciones parciales de grupo y extender al contexto parcial los resultados analizados en (Magid, 2014, Section 2.4).Item Acciones parciales y c*-algebras(Universidad Industrial de Santander, 2020) Ramírez Ardila, Edwar Alexis; Pinedo Tapia, Hector EdonisEste trabajo consiste principalmente en estudiar las acciones parciales en el contexto de los espacios topológicos localmente compactos Hausdorff y de las C -álgebras, así como la construcción del producto cruzado asociado a un sistema dinámico parcial LCH. En el primer capítulo se hace un breve estudio de la teoría de C -álgebras y del importante teorema de representación de Gelfand. En el segundo capítulo se definen e ilustran algunos conceptos básicos en la teoría de sistemas dinámicos parciales topológicos y en C -álgebras, también se presentará la relación que existe entre estos. Por último, se mostrará la construcción del producto cruzado asociado a un C -sistema dinámico parcial y su relación con las C -álgebras graduadas. En el último capítulo se mostrará, a partir de la relación que existe entre los sistemas dinámicos parciales LCH y los C -sistemas dinámicos parciales, una posible forma de extender el mecanismo de Gelfand a unas categorías mas generales. Presentaremos el semigrupo de Éxel y su utilidad en el estudio de las C -álgebras graduadas, junto con algunas preguntas que personalmente fueron de gran relevancia en el estudio de esta temática.Item Acciones parciales y el problema de globalización(Universidad Industrial de Santander, 2017) Gomez Rios, Jorge Eliecer; Pinedo Tapia, Héctor Edonis; Uzcátegui Aylwin, Carlos EnriqueEn 1998, R. Exel [12] introdujo la noción de acción parcial de un grupo sobre un conjunto como una generalización de las acciones globales. La importancia de este concepto se fundamenta en su aplicabilidad a varias áreas de las matemáticas. En particular, esta noción ha sido usada para extender resultados clásicos en topología, sistemas dinámicos, espacios métricos, anillos, entre otros. En este trabajo estudiamos acciones parciales topológicas, esto es, acciones parciales de grupos topológicos, sobre espacios topológicos. Específicamente extendemos algunos resultados conocidos para acciones globales al contexto de acciones parciales, tales como la equivalencia de la continuidad conjunta y la continuidad separada en espacios Polacos, el clásico principio de la función abierta y los teoremas de Effros. También estudiamos uno de los problemas centrales en acciones parciales conocido como el problema de globalización, el cual consiste en que dada una acción parcial m de un grupo G en un objeto X de una categoría, determinar si existe una acción global β de G en un objeto Y de la misma categoría (llamado espacio envolvente de X), tal que la restricción de β a X sea m. En particular, mostramos algunos aspectos teóricos relacionados con este problema, tales como los detalles de la construcción de una globalización para acciones parciales topológicas continuas con dominio abierto y estudiamos algunos resultados referentes a los axiomas de separación del espacio envolvente. Finalmente, dada una acción parcial topológica m : G ∗ X → X, en el Apéndice A, mostramos la construcción de una acción parcial topológica del grupo universal de Hausdorff G/E, en X, donde E = {1}, es la clausura topológica de elemento neutro de G.Item Acciones parciales y teoría de Galois(Universidad Industrial de Santander, 2018) Cañas Perez, Andres Sebastian; Pinedo Tapia, Hector EdonisEl presente trabajo de grado expone la teoría de Galois de anillos conmutativos y la teoría de Galois parcial de anillos conmutativos, las cuales son generalizaciones de la teoría de Galois sobre cuerpos. Estas teorías se basan en el concepto de extensiones de anillos y acciones parciales de un grupo sobre álgebras. Dado R un anillo, se dice que S es una extensión de R si S es un R-módulo fiel, y por otra parte se asigna un grupo G, el cual va a estar actuando global o parcialmente sobre S, dependiendo el contexto. En particular, se estudian las extensiones de Galois sobre un anillo conmutativo grupo de Galois G, acciones parciales de grupos sobre álgebras, globalizaciones de acciones parciales y extensiones de Galois parciales sobre un anillo conmutativo dada una acción parcial α. En este trabajo se encuentran los resultados más importantes de estas teorías, las cuales son, entre otras, las condiciones para que una acción parcial admita una globalización, la relación entre extensiones de Galois globales y extensiones de Galois parciales, y los respectivos teoremas de correspondencia. Adicional a lo anterior, a partir de estas definiciones y resultados se detalla la construcción de estructuras, como el grupo de Harrison y el semigrupo inverso de Harrison, los cuales son, respectivamente, conjuntos de clases de equivalencia de las extensiones de Galois y extensiones de Galois parciales de un anillo R y un grupo abeliano G fijos.Item Análisis numérico de un sistema tipo Allen-Cahn-Navier-Stokes para fluidos no-isotérmicos(Universidad Industrial de Santander, 2024-01-29) Rueda Fernández, Elián Esteban; Rueda Gómez, Diego Armando; Villamizar Roa, Élder Jesús; Arenas Díaz, Gilberto; Cabrales, Roberto CarlosEl presente trabajo se enfoca en el análisis numérico para un modelo no isotérmico de interfaz difusa, en dimensiones N=2, 3, que describe el movimiento de una mezcla de dos fluidos viscosos incompresibles. Este modelo corresponde a un acoplamiento entre las ecuaciones de Navier-Stokes, una ecuación de campo de fase dada por el modelo de Allen-Cahn convectivo, y una ecuación de transporte de energía para la temperatura; este sistema admite una ley de energía disipativa. Proponemos un esquema numérico energéticamente estable basado en el método de los elementos finitos, y analizamos estimaciones óptimas de error en normas débiles y fuertes, así como la convergencia hacia soluciones regulares. Para construir el esquema numérico, introducimos dos variables auxiliares (dadas por el gradiente de la temperatura y la variación de la energía respecto a la función campo-fase) que permiten controlar la regularidad fuerte requerida por el modelo, que es una de las principales dificultades que aparecen desde el punto de vista numérico. Teniendo en cuenta la formulación equivalente, consideramos un esquema de aproximación completamente discreto (usando elementos finitos en espacio y diferencias finitas en tiempo) que está bien planteado, que es energéticamente estable (en el sentido de que satisface una ley de energía discreta disipativa) y que satisface un conjunto de estimaciones uniformes que permiten analizar la convergencia hacia las soluciones fuertes del sistema diferencial. Finalmente, presentamos algunas simulaciones numéricas para validar numéricamente los resultados teóricos.Item Análisis teórico de la ecuación KdV con coeficientes dependientes del tiempo(Universidad Industrial de Santander, 2023-06-01) Rueda Niño, José Camilo; Arenas Díaz, Gilberto; Loaiza Motato, Gerardo Arturo; Pipicano Guzmán, Felipe Alexander; López Ríos, Juan CarlosEl presente proyecto de investigación se enmarca en la teoría de las ecuaciones diferenciales parciales dispersivas no lineales y la teoría cuasilineal de Kato. Se considera una ecuación KdV unidimensional con coeficientes dependientes del tiempo y se demuestra, considerando condiciones generales sobre los coeficientes, la buena colocación local del problema de Cauchy. Adicionalmente, para este mismo problema, se logran probar tres leyes de conservación.Item Análisis teórico de las ecuaciones diferenciales difusas de orden fraccionario(Universidad Industrial de Santander, 2021) Contreras Páez, Duván Alexis; Villamizar Roa, Elder Jesús; Arenas Díaz, Gilberto; Pérez López, Jhean Eleison; Herrón Osorio, Sigifredo de JesúsEl estudio de ecuaciones diferenciales fraccionarias constituye un campo de creciente interés, no solo desde el punto de vista teórico, sino también debido a su aplicabilidad al análisis de fenómenos de las ciencias físicas y naturales. Su formalización se caracteriza por la sustitución de derivadas clásicas por derivadas de orden fraccionario. Por otro lado, las ecuaciones diferenciales difusas se propusieron como un intento de manejar la incertidumbre que aparece en muchos modelos matemáticos de algunos fenómenos no deterministas del mundo real en los que predomina la incertidumbre, la subjetividad o la vaguedad. En esta tesis, además de disertar sobre la fundamentación teórica del cálculo fraccionario, se analiza la existencia de soluciones de problemas de valor inicial en el contexto fraccionario, que incluyen fenómenos de retardo. Explícitamente, considerando la derivada generalizada difusa de Caputo-Katugampola, se demuestran algunos resultados de existencia y unicidad vía teoremas de punto fijo de funciones débilmente contractivas sobre espacios métricos parcialmente ordenados.Item Análisis teórico de las ecuaciones diferenciales difusas de orden fraccionario(Universidad Industrial de Santander, 2021) Contreras Páez, Duván Alexis; Arenas Díaz, Gilberto; Villamizar Roa, Elder JesúsEl estudio de ecuaciones diferenciales fraccionarias constituye un campo de creciente interés, nosolo desde el punto de vista teórico, sino también debido a su aplicabilidad al análisis de fenómenosde las ciencias físicas y naturales. Su formalización se caracteriza por la sustitución de derivadasclásicas por derivadas de orden fraccionario. Por otro lado, las ecuaciones diferenciales difusas sepropusieron como un intento de manejar la incertidumbre que aparece en muchos modelos matemáticos de algunos fenómenos no deterministas del mundo real en los que predomina la incertidumbre,la subjetividad o la vaguedad. En esta tesis, además de disertar sobre la fundamentación teórica delcálculo fraccionario, se analiza la existencia de soluciones de problemas de valor inicial en el contextofraccionario, que incluyen fenómenos de retardo. Explícitamente, considerando la derivada generalizada difusa de Caputo-Katugampola, se demuestran algunos resultados de existencia y unicidad víateoremas de punto fijo de funciones débilmente contractivas sobre espacios métricos parcialmente ordenados.Item Anillos de Hermite. La recta proyectiva(Universidad Industrial de Santander, 2021) Contreras Mendoza, Astrid Liliana; Granados Pinzón, Claudia Inés; Pinedo Tapia, Héctor Edonis; García Martínez, Sandra CarolinaLos trabajos de Quillen y Suslin sobre la conjetura de la fila unimodular de Serre, abre el campo a los llamados por (Lam, 2010) anillos de Hermite. Por una parte se demuestra que los anillos locales, el producto directo de cuerpos y las K-álgebras finitas son anillos de Hermite. Un problema abierto sobre este tipo de anillos, es la Conjetura de Hermite: si R es un anillo de Hermite, entonces R[x] es un anillo de Hermite. Para el caso en que el anillo tenga dimensión de Krull menor o igual a un entero dado se prueba que la conjetura es verdadera. Por otra parte, la teoría estudiada sobre los espacios proyectivos tiene un enfoque algebraico, por ejemplo en (Doneddu, 1980) se definen los espacios proyectivos asociados a un espacio vectorial de dimensión finita sobre un cuerpo K, este enfoque permite considerar la generalización de los espacios vectoriales a los R-módulos libres. Se prueban resultados relacionados con puntos fuertemente independientes, referencias proyectivas y proyectividades algebraicas hasta llegar a demostrar el Teorema de Staudt para rectas proyectivas. Se demuestra que existe una relación biunívoca entre el espacio proyectivo y el espacio proyectivo dual y concluimos demostrando que la forma bilineal asociada a esta relación biunívoca determina una estructura simpléctica sobre el A-módulo A2.Item Anillos de hermite. La recta proyectiva(Universidad Industrial de Santander, 2021) Contreras Mendoza, Astrid Liliana; Granados Pinzón, Claudia InésLos trabajos de Quillen y Suslin sobre la conjetura de la fila unimodular de Serre, abre el campo a losllamados por (Lam, 2010) anillos de Hermite. Por una parte se demuestra que los anillos locales, el producto directo decuerpos y las KK-álgebras finitas son anillos de Hermite. Un problema abierto sobre este tipo de anillos, es la Conjeturade Hermite: si R es un anillo de Hermite, entonces R[x] es un anillo de Hermite. Para el caso en que el anillo tenga dimensión de Krull menor o igual a un entero dado se prueba que la conjetura es verdadera. Por otra parte, la teoría estudiada sobre los espacios proyectivos tiene un enfoque algebraico, por ejemplo en (Doneddu,1980) se definen los espacios proyectivos asociados a un espacio vectorial de dimensión finita sobre un cuerpo K,este enfoque permite considerar la generalización de los espacios vectoriales a los R-módulos libres. Se pruebanresultados relacionados con puntos fuertemente independientes, referencias proyectivas y proyectividades algebraicashasta llegar a demostrar el Teorema de Staudt para rectas proyectivas. Se demuestra que existe una relación biunívocaentre el espacio proyectivo y el espacio proyectivo dual y concluimos demostrando que la forma bilineal asociada a esta relación biunívoca determina una estructura simpléctica sobre el .A-módulo 42.Item Anillos totales de cocientes y su recta proyectiva(Universidad Industrial de Santander, 2021) Guevara Gómez, Jackson; Granados Pinzón, Claudia Inés; Teherán Herrera, Arnoldo Rafael; Bueno Carreño, Diana HaidiveEn este trabajo de investigaci_x0013_on se estudia el problema abierto de la geometr_x0013__x0010_a proyectiva, que consiste en caracterizar la recta proyectiva sobre anillos, en todo el documento, se entender_x0013_a por anillo, como un anillo conmutativo con uno. Particular- mente, este trabajo se centra en la recta proyectiva sobre anillos totales de cocientes. Primero, se consideran los anillos de cocientes y el homomor_x000C_smo can_x0013_onico. Se intro- ducen los anillos totales de cocientes como un caso particular de los anillos de cocientes y se establecen relaciones existentes con otros anillos como los dominios eucl_x0013__x0010_deos, las K-_x0013_algebras _x000C_nitas y el producto directo de anillos totales de cocientes. Finalmente se muestra la inmersi_x0013_on de cualquier anillo en un producto de cuerpos. As_x0013__x0010_ mismo, se inicia el estudio de la recta proyectiva sobre anillos totales de co- cientes, de_x000C_niendo los elementos complementables en un m_x0013_odulo libre bidimensional. Tambi_x0013_en se mencionan conceptos como fuertemente independientes y referencia proyec- tiva; posteriormente se de_x000C_nen las proyectividades algebraicas _x001C_ - semilineales; la raz_x0013_on doble (o raz_x0013_on anarm_x0013_onica) y como un caso particular, la cuaterna arm_x0013_onica. Finalmen- te se consideran las proyectividades de Staudt que mantienen invariantes las cuaternas arm_x0013_onicas y se demuestra El Teorema de Staudt.Item Caracterización de invertivilidad de un sistema compresivo de imágenes espectrales usando minimización del rango de un tensor(Universidad Industrial de Santander, 2020) Fonseca Vargas, Yesid Ferney; Arguello Fuentes, HenryEn este trabajo de investigación, el problema de muestreo compresivo para un tensor de 3 dimensiones se aborda asumiendo que los datos 3D dimensionales reconstruidos a partir de las mediciones comprimidas tienen una representación de bajo rango tensorial. En particular, en esta tesis se define la Propiedad Isométrica Restringida (PIR) que establece que un operador lineal que comprime los datos satisface cierta desigualdad entre normas Frobenius para todos los tensores con rango tensorial más bajo que el rango tensorial del tensor original a reconstruir. Además, este trabajo muestra tres formas diferentes de definir el rango tensorial como una generalización del rango matricial (para datos con 2 dimensiones). Basado en estas definiciones, se presenta un teorema principal de unicidad que indica que un tensor original puede ser completamente reconstruido resolviendo un problema de optimización convexo donde el objetivo es minimizar la norma nuclear tensorial sujeto a que las medidas comprimidas con el operador lineal permanezcan iguales. Este teorema de unicidad tiene como condición suficiente que el operador lineal que comprime los datos satisfaga la PIR. Por otro lado, se analizan los operadores lineales cuasi-isométricos, el cual es una familia de operadores lineales estocásticos, y proporciona un límite de probabilidad asociado con el evento de que un operador lineal cuasi-isométrico satisfaga la PIR.Item Celdas en hiperespacios de continuos(Universidad Industrial de Santander, 2016) Herrera Villamizar, Daniel Armando; Camargo García, Javier EnriqueSe conocen modelos de hiperespacios para diferentes continuos que nos permiten conocerlos totalmente en cuanto a sus propiedades topológicas y geométricas. Sin embargo para la mayoría de continuos no es posible dar modelos geométricos a sus hiperespacios y por esta razón debemos encontrar maneras alternativas para describir propiedades de estos hiperespacios. Un problema curioso e interesante que nos ayuda a entender la geometría de los hiperespacios, es identificar celdas en estos hiperespacios. Es conocido que el hiperespacio 2 X de un continuo X, siempre contiene un cubo de Hilbert. Además, 2 X es un cubo de Hilbert si y sólo si X es un continuo localmente conexo. Tenemos que C(X) contiene n−celdas si y sólo si X contiene n−odos, para algún n ∈ N. De manera más general, Cn(X) es un cubo de Hilbert si y sólo si X es un continuo localmente conexo sin arcos libres. Además, con estas ideas, no es difícil probar que si X contiene un subcontinuo descomponible, entonces Cn(X) contiene una (n + 1) −celda, para cada n ∈ N. En este trabajo, mostramos que el recíproco del resultado anterior también es válido y de esta manera damos una respuesta afirmativa a la pregunta; “¿Dado un continuo X. Si Cn(X) contiene (n + 1) −celdas, para algún n ∈ N, entonces X contiene un subcontinuo descomponible?”. Este trabajo está dividido en tres capítulos. En el Capítulo 1 mostramos algunas definiciones y resultados de los continuos y sus hiperespacios. Comenzamos el Capítulo 2 mostrando modelos geométricos para el hiperespacio C(X) de ciertos continuos seguido de algunos resultados obtenidos previamente que nos permiten determinar n−celdas en los hiperespacios 2 X y C(X). En el Capítulo 3 mostramos algunos resultados obtenidos sobre n−celdas en el hiperespacio Cn(X), y por último presentamos nuestros resultados.Item Conjuntos omega límite en clases de continuos(Universidad Industrial de Santander, 2021) Cancino Rey, Johan Camilo; Camargo García, Javier EnriqueDados un espacio métrico compacto y f: X > X una función continua definida sobre X, es comúnllamar sistema dinámico discreto al par (X, f). Para un punto x € X, se definen sus conjuntos omega límite comow(x,f) = [y EX : y es punto límite de la sucesión (f"(x))nen) y Q(x, f) = [y € X : existen sucesiones (Xi)jew EX y (Mi)ien EN con x; >x y f”(x;) > y), los cuales nos permiten definir de forma natural las funciones omega límiteOr, Q/: X= 2%. En este trabajo estudiaremos propiedades de los conjuntos omega límite y las funciones omega límite en ciertas clases de continuos, como continuos de tipo lambda, dendritas, dendroides o continuos atriódicos. Iniciaremos presentando los conceptos más relevantes de teoría de continuos y sistemas dinámicos discretos que seusarán a lo largo del trabajo. Luego, abordaremos los continuos de tipo A, y presentaremos la noción de función quepreserva fibras, que será esencial al estudiar algunas propiedades dinámicas en esta clase continuos. Posteriormente,consideramos los puntos no errantes y su relación con el conjunto Q(x, f'); en esta parte se mostrará por ejemplo quela función Qf siempre es semicontinua superior. Seguidamente se presentarán algunas generalizaciones de resultadosconocidos previamente, y para finalizar se estudiarán los continuos atriódicos y ciertas propiedades dinámicas que involucran los conjuntos omega limite, puntos periódicos, puntos recurrentes y el concepto de equicontinuidad.Item Conjuntos omega límite en clases de continuos(Universidad Industrial de Santander, 2021) Cancino Rey, Johan Camilo; Camargo García, Javier Enrique; Isaacs Giraldo, Rafael Fernando; Maya Escudero, DavidDados un espacio métrico compacto y f : X → X una función continua definida sobre X, es común llamar sistema dinámico discreto al par (X, f ). Para un punto x ∈ X, se definen sus conjuntos omega límite como ω(x, f ) = {y ∈ X : y es punto límite de la sucesión ( f n(x))n∈N} y Ω(x, f ) = {y ∈ X : existen sucesiones (xi)i∈N ⊆ X y (ni)i∈N ⊆N con xi→x y f ni (xi)→y}, los cuales nos permiten definir de forma natural las funciones omega límite ωf ,Ωf : X →2X . En este trabajo estudiaremos propiedades de los conjuntos omega límite y las funciones omega límite en ciertas clases de continuos, como continuos de tipo lambda, dendritas, dendroides o continuos atriódicos. Iniciaremos presentando los conceptos más relevantes de teoría de continuos y sistemas dinámicos discretos que se usarán a lo largo del trabajo. Luego, abordaremos los continuos de tipo λ, y presentaremos la noción de función que preserva fibras, que será esencial al estudiar algunas propiedades dinámicas en esta clase continuos. Posteriormente, consideramos los puntos no errantes y su relación con el conjunto Ω(x, f ); en esta parte se mostrará por ejemplo que la función Ωf siempre es semicontinua superior. Seguidamente se presentarán algunas generalizaciones de resultados conocidos previamente, y para finalizar se estudiarán los continuos atriódicos y ciertas propiedades dinámicas que involucran los conjuntos omega limite, puntos periódicos, puntos recurrentes y el concepto de equicontinuidad.Item Continuos débilmente unicoherentes(Universidad Industrial de Santander, 2017) Palacios Arenas, Mayer Yulian; Camargo García, Javier EnriqueLa teoría de continuos estudia los espacios métricos, compactos, conexos y no vacíos llamados continuos; el estudio de los continuos, se concentra en identificar propiedades importantes en ellos, un ejemplo es la unicoherencia débil en continuos. Un continuo es débilmente unicoherente, si al ver el espacio como la unión de dos subcontinuos, cuya intersección tiene interior no vacío, se tiene que la intersección de los dos subcontinuos es conexa. Un arco y una 2-celda son continuos débilmente unicoherentes, mientras una curva cerrada simple no lo es. Este trabajo se desarrolla de la siguiente manera: el primero consiste en la revisión de conceptos generales de topología y teoría de continuos, además de las herramientas básicas para la construcción de continuos como la intersección anidada de continuos y límites inversos de continuos; finalmente, se revisa algunas propiedades de continuos irreducibles, indescomponibles, unicoherentes y s-conexos. El segundo capítulo profundiza sobre los continuos débilmente unicoherentes y hereditariamentes débilmente unicoherentes, se muestran ejemplos y propiedades; así mismo, se verá su relación con la unicoherencia y la unicoherencia hereditaria respectivamente. Posteriormente, en el tercer capítulo se estudia las funciones monótonas, casimonótonas, cuasimonótonas, fuertemente libremente descomponibles y libremente descomponibles y se muestran las relaciones entre dichas funciones. Dado que las funciones continuas y abiertas no preservan unicoherencia débil, se estudia la imagen de continuos débilmente unicoherentes a través de las funciones definidas en el Tercer Capítulo y se muestra cuáles de estas funciones preservan unicoherencia débil. Además, se estudia la relación entre las funciones fuertemente libremente descomponibles y las funciones casimonótonas, cuando el dominio es un continuo que satisface ciertas propiedades.Item Continuos g-contraibles(Universidad Industrial de Santander, 2012) Rincón Villamizar, Michael Alexander; Camargo García, Javier EnriqueUn continuo es un espacio métrico, compacto, conexo y diferente del vacío. Un continuo es contraíble si la función identidad es homotópica a una función constante. Claramente, un intervalo compacto, una n-celda (espacio homeomorfo a [0, 1]”) o cualquier subconjunto compacto y convexo de un espacio normado son ejemplos de continuos contraíbles. Por otro lado, el continuo S no es contraíble. Un continuo X es g-contraíble o contraíble generalizado si existe una función f: X => X continua, sobreyectiva y homotópica a una función constante. Los continuos y-contraíbles fueron introducidos por el Profesor David Bellamy en [2]. Claramente todo continuo contraíble es g-contraíble. No es difícil ver que cualquier continuo localmente conexo es g-contraíble. En particular, el continuo 5? es un continuo g-contraíble que no es contraíble. El propósito de este trabajo es estudiar los continuos g-contraíbles. Nuestro trabajo consta de tres capítulos: en el Capítulo 1 introducimos la terminología y notación que se usará en este trabajo. En el Capítulo 2 estudiamos los continuos y-contraíbles. En este capítulo presentamos nuevos resultados y ejemplos. Construiremos una familia no numerable de continuos uniformemente conexos por caminos (ver Definición 2.27) tal que ningún elemento de esta familia es y-contraíble. Finalmente, en el Capítulo 3 estudiamos la y-contractibilidad en los hiperespacios de continuos (ver Definición 1.40). Probaremos que para un continuo X, el hiperespacio F,, (X) es imagen y preimagen continua del cono sobre el conjunto de Cantor si y sólo si X también lo es. Como en el Capítulo 2, construiremos una familia de continuos uniformemente conexos por caminos tal que el hiperespacio de subcontinuos de cada miembro de esta familia no es g-contraíble.Item Continuos G-pseudo-contraíbles(Universidad Industrial de Santander, 2022-09-10) Oliveros Caicedo, María Angélica; Camargo García, Javier Enrique; Pérez León, Sergio Andrés; Maya Escudero, DavidUn continuo es un espacio métrico no vacío, compacto y conexo. Un continuo X es contraíble si existen una función continua H : X × [0, 1] → X y un punto p de X tales que H(x, 0) = x y H(x, 1) = p, para cada x ∈ X. R H Bing introduce la noción de pseudo-contraíble de la siguiente forma: Un continuo X es pseudo-contraíble si existen un continuo K, dos puntos a y b en K, un punto p en X y una función continua H : X × K → X tales que H(x, a) = x y H(x, b) = p, para cada x ∈ X. Años más tarde, David Bellamy generaliza la noción de contractibilidad de la siguiente manera: Un continuo X es g-contraíble si existen una función continua y sobreyectiva f : X → X, un punto p de X y una función continua H : X × [0, 1] →X tales que H(x, 0) = f (x) y H(x, 1) = p, para cada x ∈ X. Con las ideas de Bing y Bellamy, resulta natural definir la noción de g-pseudo-contraíble, que fue definido posteriormente, de la siguiente manera: Un continuo X es g-pseudo-contraíble si existen un continuo K, dos puntos a y b de K, una función sobreyectiva f : X → X, un punto p de X y una función continua H : X × K → X tales que H(x, a) = f (x) y H(x, b) = p, para cada x ∈ X. Mostraremos propiedades, ejemplos y relaciones entre estas nociones derivadas de la contractibilidad en continuos.Item Copias de c0(Γ) en espacios de funciones diferenciables(Universidad Industrial de Santander, 2021) Arocha Osorio, Ludwing Duhan; Rodríguez Cárdenas, Carlos Wilson; Reyes González, Edilberto José; Muentes Acevedo, Jeovanny de JesúsSea X un espacio de Banach y K un subespacio localmente compacto de R sin puntos aislados. Se denota por C(m) 0 (K;X) al espacio de Banach de todas las funciones f : K !X de clase C(m) tales que f ; f (1); _x0001_ _x0001_ _x0001_ ; f (m) se anulan en el infinito, dotado de la norma k f kM = m´ax 0_x0014_j_x0014_m fk f ( j)k¥g. En este trabajo estudiamos la clase de espacios C(m) 0 (K;X). Extendemos el teorema de Cembranos (1984) y probamos que si X es de dimensión infinita, entonces C(m) 0 (K;X) contiene una copia complementada de co, donde co denota al espacio de Banach de todas las sucesiones de escalares que convergen a cero. Si G es un conjunto no vacío dotado con la topología discreta, el espacio C0(G) será denotado como c0(G). En particular, si G es infinito numerable, c0(G) es el espacio de sucesiones de escalares que convergen a cero, es decir, c0. Como segundo resultado, se extiende una demostración hecha por Galego and Hagler (2012) y se prueba que si C(m) 0 (K;X) contiene copia de c0(À1), esto es, el espacio de funciones (aa)a2À1 tales que para cada e > 0, el conjunto fa 2 À1 : jaaj _x0015_ eg es finito, entonces X contiene copia de c0(À1). Finalizamos este trabajo planteando preguntas para posibles trabajos futuros de investigación (sección 2.3).Item Copias de c0(Γ) y L_∞(Γ) en espacios de funciones(Universidad Industrial de Santander, 2021) Reyes Rojas, Diego Johann; Rodríguez Cárdenas, Carlos Wilson; Pérez López, Jhean Eleison; Pérez León, Sergio AndrésEl Teorema de Drewnowski, el cual fue probado por el matemático polaco Lech Drewnowski en 1991 establece condiciones necesarias y suficientes para que el espacio Kω˚ pX ˚;Yq de los operadores lineales ω ˚ ´ ω´continuos y compactos contenga una copia de `8. Esto es, Kω˚ pX ˚;Yq contiene una copia de `8 si, y solo si, X o Y contiene una copia de `8. Una consecuencia de este teorema es que el espacio KpX;Yq de los operadores compactos de X en Y contiene una copia de `8 si, y solo si, X ˚ o Y contiene una copia de `8. En este trabajo probare_x0002_mos que el Teorema de Drewnowski puede ser extendido al espacio Pω˚ p nX ˚;Yq de los polinomios n´homogéneos ω ˚ ´ ω´continuos y compactos de X ˚ en Y. Esto es, Pω˚ p nX ˚;Yq contiene una copia de `8 si, y solo si, X o Y contiene una copia de `8. También mostraremos que el Teorema de Drewnowski para el caso de KpX;Yq no puede ser extendido al espacio PKp nX;Yq de los polinomios n´homogéneos compactos de X en Y considerando el caso en el que n “ 2 y X “ Y “ `2, esto es, PKp 2 `2; `2q. Finalmente, daremos condiciones para que el espacio Pω˚ p nX ˚;Yq contenga una copia de c0pΓq o `8pΓq.