Matemáticas
Permanent URI for this collection
Browse
Browsing Matemáticas by Author "Archila Prada, Astrid Carolina"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Sobre la factorización de ideales en dominios de dedekin(Universidad Industrial de Santander, 2021) Archila Prada, Astrid Carolina; Pinedo Tapia, Hector EdonisEste trabajo se divide en dos capítulos, en el primero se dan definiciones, proposiciones y teoremasgenerales sobre estructuras algebraicas que resultan útiles para desarrollar las bases de númerosalgebraicos en una manera relativamente elemental. También se enuncian caracterizaciones para los anillos noetherianos. En el segundo capítulo, las dos primeras secciones establecen las propiedades de las extensiones decuerpos de los números racionales que se obtienen de adjuntar números algebraicos. En particular,se demuestra que cada una de estas extensiones son de la forma Q(9) con 4 un número algebraico(Teorema elemento primitivo (21-11). En la tercera sección se introduce el anillo de enteros de uncuerpo numérico K, denotado por D = Kn B siendo B el conjunto de números algebraicos; se pruebaque D es noetheriano, integralmente cerrado y que todo ideal primo de D es maximal (Teoremal2.3.4).A partir de estas propiedades se define la estructura de dominio de Dedekind y se demuestra en estecaso general que los ideales fraccionarios forman un grupo bajo la multiplicación (item 1. Teorema[2.3-7. De esto se deduce que todo ideal de D se escribe como producto finito de ideales primos yeste producto es único salvo por el orden de los factores (item 2. Teorema|2.3.7). En la sección finalse define la norma de un ideal y se demuestra que dado un entero positivo este es la norma de unnúmero finito de ideales de D (Teorema[2.4.10), lo cual es posible por la factorización prima única endominios de Dedekind.