Graduaciones en álgebras de camino de Leavitt
Loading...
Date
2022-09-12
Authors
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Este trabajo consiste en estudiar las graduaciones del álgebra de camino de Leavitt, en particular nos centraremos en la Z−graduación canónica y la G−graduación canónica con G un grupo arbitrario y también en la F−graduación donde F es el grupo libre generado por las aristas del grafo, la cual es inducida por el isomorfismo entre las álgebras de camino de Leavitt y cierto anillo de grupo torcido. El objetivo de este trabajo es ver cuando una graduación en estas álgebras es fuertemente graduada, épsilon fuertemente graduada o un producto cruzado por una acción parcial, además de estudiar propiedades de la F−graduación basados en resultados ya existentes para la Z−graduación canónica. En los dos primeros capítulos mencionamos algo de historia de las álgebras de camino de Leavitt y los conceptos básicos de estas, los cuales serán de utilidad a lo largo de este trabajo. En el capítulo siguiente estudiamos las graduaciones canónicas, en particular, cuando la Z−graduación es una fuerte graduación y cuando la G−graduación hace al álgebra de camino de Leavitt épsilon fuertemente graduada. En el tercer capítulo vamos a construir el puente entre las álgebras de camino de Leavitt y los anillos de grupo torcido, además de estudiar algunas aplicaciones de esta interacción. Para finalizar, en el último capítulo mostraremos algunos resultados propios del estudio de la F−graduación, a saber, cuando esta graduación hace a LK(E) fuertemente graduada, clean graduada y unit-regular graduada, por otro lado, también presentaremos una prueba alternativa al isomorfismo entre LK(E) y otro anillo de grupo torcido.
Description
Keywords
Álgebras de camino de Leavitt, Anillos graduados, Anillos fuertemente graduados y Anillos de grupo torcido parcial