Una monada universal
No Thumbnail Available
Date
2007
Authors
Advisors
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
Una categoría Ces una estructura compuesta de una clase Obg cuyos miembros sonllamados objetos de la categoría; para cada par de objetos A, B de C existe el conjuntohomg(A, B) cuyos elementos son llamados morfismos ó flechas de la categoría, lascuales tienen dominio A y contradominio B; para cada A objeto de la categoría C existeun morfismo identidad y una ley de composición asociativa, por ejemplo la categoríaComp donde los objetos son los espacios compactos de Hausdorff y los morfismos sonfunciones continuas entre ellos. Las categorías se relacionan por medio de funtores,estos son una aplicación que preserva estructura es decir, envía objetos en objetos ymorfismos en morfismos; cuando la aplicación se hace entre categorías iguales entoncesse llama endofuntor; los funtores a su vez se relacionan por medio de transformacionesnaturales, estas son una aplicación que asigna a cada objeto 4 de C único morfismoen D. Teniendo ya estas estructuras definicionidas se puede construir una mónadapues esta consta de un endofuntor y dos transformaciones naturales, la primera deellas es la transformación identidad y la segunda es una aplicación de F? en F dondeF? es FoFi; la mónada V se llama universal porque contiene todas las mónadas de Lawson.
Description
Keywords
Categorias, Funtores, Transformaciones naturales, Mónada, .