F-estructuras en variedades bandera

No Thumbnail Available
Date
2011
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
El objetivo de este trabajo es hacer una extensión de la condición de variedad (1,2)-simpléctica al caso en que una f-estructura FF es considerada sobre una variedad bandera maximal F, dotada de una métrica invariante. Una f-estructura F es un endomorfismo del espacio tangente en un punto de una variedad, el cual satisface que F + F = (. Este estudio fue motivado por la relación que existe entre una f-variedad (1,2)-simpléctica y la existencia de aplicaciones armónicas mediante aplicaciones holomorfas. Inicialmente son presentados algunos conceptos preliminares que permiten adentrarse en el lenguaje de los grupos y álgebras de Lie y de las variedades bandera. Se estudia también la relación entre estructuras casi-complejas y torneos. Posteriormente es considerado el caso especial de la variedad bandera maximal F(n) asociada al álgebra de Lie sl(n, C) y se da una descripción completa de las f-estructuras invariantes (1,2)-admisibles, analizando los casos F(2), F(3) y F(4), las f-estructuras localmente transitivas, los digrafos completamente no transitivos y por último se estudia el caso de la variedad bandera general, para concluir: una f-estructura invariante F sobre F(n) es localmente transitiva si, y solamente si, ella es (1,2)-admisible, esto es, existe una métrica dsí tal que (F(n), A, F) es (1,2)-simpléctica. Por último se muestran las características (subálgebra de Cartan y sistema simple de raíces) del álgebra de Lie semisimple de dimensión finita B,. También se considera la variedad bandera maximal asociada a las álgebras de Lie de rango menor o igual a tres, con una métrica y una f-estructura invariante, se demuestra la equivalencia entre localmente transitiva y (1,2)-simpléctica para los casos mencionados demostrando caso por caso.
Description
Keywords
Variedad bandera, Grupos y álgebras de Lie, Métrica invariante, F-estructura, Digrafos, subálgebra de
Citation