Anillos totales de cocientes y su recta proyectiva

No Thumbnail Available
Date
2021
Evaluators
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Industrial de Santander
Abstract
En este trabajo de investigación se estudia el problema abierto de la geometría proyectiva, que consiste en caracterizar la recta proyectiva sobre anillos, en todo el documento, se entenderá por anillo, como un anillo conmutativo con uno. Particularmente, este trabajo se centra en la recta proyectiva sobre anillos totales de cocientes. Primero, se consideran los anillos de cocientes y el homomorfismo canónico. Se introducen los anillos totales de cocientes como un caso particular de los anillos de cocientes y se establecen relaciones existentes con otros anillos como los dominios euclídeos, las K-álgebras finitas y el producto directo de anillos totales de cocientes. Finalmente se muestra la inmersión de cualquier anillo en un producto de cuerpos. Así mismo, se inicia el estudio de la recta proyectiva sobre anillos totales de cocientes, definiendo los elementos complementables en un módulo libre bidimensional. También se mencionan conceptos como fuertemente independientes y referencia proyectiva; posteriormente se definen las proyectividades algebraicas τ - semilineales; la razón doble (o razón anarmónica) y como un caso particular, la cuaterna armónica. Finalmente se consideran las proyectividades de Staudt que mantienen invariantes las cuaternas armónicas y se demuestra El Teorema de Staudt.
Description
Keywords
Nillos Totales de Cocientes, Recta Proyectiva, Referencia proyectiva, Razón doble, Proyectividad de Staudt.
Citation