Matemáticas
Permanent URI for this collection
Browse
Browsing Matemáticas by browse.metadata.advisor "Holguín Villa, Alexander"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Anillos de Grupo Locales(Universidad Industrial de Santander, 2024-10-28) Barajas Avila, Jhan Carlos; Holguín Villa, Alexander; Teheran Herrera, Arnoldo Rafael; Rodriguez Palma, Carlos ArturoUn anillo es llamado local si tiene exactamente un ideal maximal y en este caso coincide con el radical de Jacobson del anillo. Muchos problemas del álgebra conmutativa y la geometría algebraica pueden reducirse al caso cuando el anillo es local, como por ejemplo a menudo un anillo local surge de la localización de un anillo en un ideal primo. Se busca llevar esta noción de anillo local a la estructura algebraica de interés anillo de grupo, donde se observarán las caracterizaciones del anillo y del grupo y así determinar cuándo es un anillo local. El trabajo consta de cuatro capítulos. En el primer capítulo se abarcan los conceptos preliminares para el desarrollo del tema principal, en el segundo capítulo, se estudian la propiedades y resultados de la estructura algebraica de interés, los anillos de grupo, en el tercer capítulo se introduce el concepto de localización y el concepto de localidad en el contexto anillo teórico, por último en el cuarto capítulo, se presentan las condiciones necesarias y suficientes tanto del anillo como del grupo, que garantizan cuándo un anillo de grupo es local, asumiendo en todo momento que los anillos son no nulos y asociativos con identidad o unidad.Item Involuciones y anillos de grupo clean(Universidad Industrial de Santander, 2022-09-08) Sarmiento Ojeda, Cristian Alexander; Holguín Villa, Alexander; Pinedo Tapia, Héctor Edonis; Olaya León, WilsonUn anillo es llamado clean si cada uno de sus elementos puede ser escrito como la suma de una unidad y un idempotente. Entre los anillos con involución y la propiedad clean existe una conexión que permite obtener una generalización de esta propiedad, conocida como propiedad ∗-clean. Un anillo con involución ∗ es llamado ∗-clean si cada uno de sus elementos puede ser escrito como la suma de una unidad y una proyección. El trabajo consta de tres capítulos. En el primero se abarcan los conceptos necesarios para el desarrollo del tema. En el segundo capítulo, se introduce la propiedad clean tanto en anillos como en anillos de grupo y se presentan algunas de sus propiedades. En el tercer y último capítulo se presentan condi- ciones necesarias y suficientes para que el anillo de grupo RG sea ∗-clean, donde R es un anillo local conmutativo, G es uno de los grupos C3, C4, S3 o Q8 y ∗ es la involución clásica en RG, es decir, la extención R lineal de ∗ : G → G, g → g−1 para todo g ∈ G.